Dabigatran etexilate (Pradaxa®) is an oral anticoagulant licensed in multiple countries, Europe and Canada, for the prevention of venous thromboembolic events (VTE) in patients undergoing total hip replacement surgery (THR) or total knee replacement surgery (TKR). The label recommendation for therapy initiation of dabigatran etexilate is a half dose given 1–4 hours after surgery. If this is not possible, then dabigatran etexilate should be started the day following surgery with the full dose. In the European pivotal Phase III clinical trials, this initial dosing was delayed until the day after surgery in 14% of the cases. This prompted a post hoc study to analyze if these patients received adequate thromboprophylaxis. Pooled efficacy data of major VTE events (composite of proximal DVT, symptomatic DVT, pulmonary embolism and VTE-related death) from the two European pivotal trials (RE-MODEL;
The oral direct thrombin inhibitor dabigatran etexilate (Pradaxa®) was recently approved in Europe for the prevention of venous thromboembolism (VTE) in patients undergoing elective total knee or total hip replacement surgery. In the Phase III RE-MODEL (
Dabigatran etexilate (Pradaxa®) is an oral direct thrombin inhibitor that was recently approved in Europe and Canada for the prevention of venous thromboembolism (VTE) in patients undergoing elective total knee replacement or total hip replacement surgery. Two pivotal clinical trials, RE-MODEL (
Rivaroxaban is an oral, direct Factor Xa inhibitor in clinical development for the prevention of VTE after major orthopaedic surgery. Data from three phase II trials of twice-daily (bid) rivaroxaban in patients undergoing elective, total hip or knee replacement were pooled to determine whether age, gender or weight affected the efficacy or safety of rivaroxaban, and thus whether dose adjustment would be necessary. Patients received 5–9 days of oral rivaroxaban (2.5–30 mg bid, post-operatively), or s.c. enoxaparin. A logistic regression model using total daily dose of rivaroxaban as a covariate, and adjusted for differences between dose groups with respect to study, age and gender, was used to estimate rates of the primary efficacy endpoint (DVT, PE or all-cause mortality; n=1380 intention-to-treat patients) and clinically relevant bleeding (major and non-major clinically relevant bleeding; safety population, n=1854). Rivaroxaban at total daily doses of 5–20 mg had similar efficacy and safety to enoxaparin. Overall, logistic regression showed a positive dose–response relationship with rivaroxaban for clinically relevant bleeding (p<
0.001), and a flat relationship for the primary efficacy endpoint (p=0.115). The risk of VTE increased with age – the efficacy endpoint was estimated to occur in 17.3–9.4%, 18.7–17.3% and 26.6–20.2% of patients aged <
60 yrs, 60–70 yrs and >
70 yrs receiving rivaroxaban (total daily dose 5–60 mg), respectively, in separate regression models. Age was also prognostic for clinically relevant bleeding with rates of 1.4–12.0% (<
60 yrs), 2.7–15.4% (60–70 yrs) and 5.7–15.4% (>
70 yrs). The rates are for a population distributed equally across the studies and genders. Incidences of the efficacy endpoint were higher in females (25.8–20.5%) than males (16.6–10.7%), while clinically relevant bleeding occurred more frequently in males (5.4–16.3%) than in females (1.7–11.6%), after adjustment for age. Weight was not prognostic for the efficacy endpoint or clinically relevant bleeding (p=0.87 and p=0.48, respectively, after adjustment for age, gender and study), nor did it modify the dose–response relationships with rivaroxaban. Incidences of the efficacy endpoint for a population of equal study and gender distribution and of mean patient age were 23.4–15.7% and 19.1–14.6% in patients weighing <
65 kg and ≥90 kg, respectively, with corresponding bleeding rates of 3.3–16.5% and 3.2–17.5%. This analysis indicates that age, gender or weight did not affect the dose–response relationships (or lack thereof) between rivaroxaban and the primary efficacy endpoint or clinically relevant bleeding. As expected, age was prognostic for VTE and bleeding. These findings suggest that rivaroxaban may not require dose adjustment for age, gender or weight in orthopaedic patients.
Routine prophylaxis is recommended to prevent venous thromboembolism (VTE) – manifesting as deep vein thrombosis (DVT) and/or pulmonary embolism (PE) – in patients undergoing major orthopaedic surgery. Rivaroxaban (BAY 59-7939) is a novel, oral, direct Factor Xa inhibitor in development for the prevention and treatment of VTE. The efficacy and safety of 5–9 days’ prophylaxis with rivaroxaban were investigated in three randomized, double-blind, phase IIb trials in patients undergoing elective, total hip or knee replacement (THR or TKR), relative to subcutaneous enoxaparin. Two trials (one in patients undergoing THR, N=722; and one in patients undergoing TKR, N=621) investigated twice-daily (bid) rivaroxaban (at total daily doses of 5–60 mg); the third (in patients undergoing THR, N=873) investigated once-daily (od) rivaroxaban (at doses of 5, 10, 20, 30 or 40 mg od). Rivaroxaban – at all doses tested – had similar efficacy to enoxaparin in the bid trials. This promising finding was strengthened by the od trial, in which the observed incidences of the primary efficacy endpoint (DVT, non-fatal PE or all-cause mortality) were lower in patients receiving rivaroxaban 5, 10, 20, 30 and 40 mg od (14.9%, 10.6%, 8.5%, 13.5% and 6.4%, respectively) than enoxaparin (25.2%). Although there was no significant dose–response relationship between rivaroxaban and the primary efficacy endpoint in these trials, there was with major VTE (proximal DVT, PE or VTE-related death; p=0.0072) in the od trial (incidences were 8.5%, 2.7%, 0.9%, 1.9% and 1.1% with rivaroxaban 5, 10, 20, 30 and 40 mg od, respectively, vs 2.8% with enoxaparin). Significant dose–response relationships between rivaroxaban and major bleeding were observed in all three trials. In the bid trials, major bleeding rates with rivaroxaban were similar to those with enoxaparin at total daily doses of 5–20 mg. In the od trial, major bleeding occurred in 2.3%, 0.7%, 4.3%, 4.9% and 5.1% of patients receiving rivaroxaban 5, 10, 20, 30 and 40 mg od, respectively, and in 1.9% of those receiving enoxaparin. Rivaroxaban was generally well tolerated in the bid and od trials, and the incidence of nausea and vomiting with early post-operative oral rivaroxaban administration was low for all doses tested. The bid trials suggest that oral rivaroxaban at total daily doses of 5–20 mg may be a safe and effective alternative to enoxaparin for the prevention of VTE after major orthopaedic surgery. The od trial suggests that the more-convenient od regimen is feasible and that 10 mg od, a dose within the range identified by the bid trials, should be investigated further. As a result, oral rivaroxaban 10 mg od is currently being investigated in four phase III trials for the prevention of VTE after major orthopaedic surgery (the RECORD trials).
Ximelagatran is an oral direct thrombin inhibitor intended for the prophylaxis and treatment of thrombo-embolic complications. Purpose: The efficacy and safety of ximelagatran, and its subcutaneous (sc) form melagatran, were evaluated in patients undergoing total hip or knee replacement (THR, TKR). Study 1 was a randomised, double-blind, controlled, dose–response study in which patients received 2-6 doses of sc melagatran (1, 1.5, 2.25, or 3 mg bid) followed by oral ximelagatran (8, 12, 18, or 24 mg bid), or sc dalteparin (5000 IU od). Melagatran treatment was initiated immediately before surgery. Study 2 was a randomized, double-blind, controlled study in which patients received 1–5 doses of sc melagatran (3 mg bid) initiated 4–12 h after surgery followed by oral ximelagatran (24 mg bid), or sc enoxaparin (40 mg od). In both studies, low-molecular-weight heparin (LMWH) was started the evening before surgery, and all treatment regimens were continued for 8–11 days. Bilateral venography was performed on the final day of treatment. Results: In Study 1, 1876 patients underwent THR (n=1270) or TKR (n=606). A significant dose-dependent reduction in venous thromboembolism (VTE) was seen with melagatran + ximelagatran for both THR (P<
0.0001) and TKR (P=0.0014). The rate of VTE was significantly lower with the highest dose of melagatran + ximelagatran (15.1%) when compared with dalteparin (28.2%) (P<
0.0001). In Study 2, 2788 patients underwent THR (n=1923) or TKR (n=865). The VTE rate was 31% in the melagatran + ximelagatran group and 27% in the enoxaparin group (P=0.053). Total bleeding volume was not significantly different between treatment groups. Conclusion: Fixed-dose sc melagatran followed by oral ximelagatran are efficacious and well tolerated for the prophylaxis of VTE following THR or TKR.