Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 26 - 26
22 Nov 2024
Karlsen ØE Eriksen-Volle H Furnes O Dale H Westberg M
Full Access

Aim

Two types of national registers surveil infections after primary total hip arthroplasty (THA) in Norway: The National surveillance system for surgical site infections (NOIS) that surveil all primary THAs 30 days postoperatively for surgical site infections (SSI), and the Norwegian Arthroplasty Register (NAR) that follow all THAs until any surgical reoperation/revision or the death of the patient. Since these registers report on the same THAs we assessed correspondence between and time trends for the two registers in period 2013 to 2022. All reported THAs were included.

Method

The THAs were matched on a group level according to sex, age and ASA-class. In addition to descriptive statistics, adjusted Cox regression analyses were performed with adjustment for sex, age group (<45, 45-54, 55-64, 65-74, 75-84, >85 years) and ASA-class (1, 2, 3, 4 and missing). Changes in annual incidence and adjusted hazard rate (aHR) was calculated. Endpoints in the NOIS were 30-Days SSI and 30-Days reoperation for SSI. Endpoints in the NAR were 30-Days and 1-Year reoperation for periprosthetic joint infection (PJI).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 78 - 78
22 Nov 2024
Lutro O Tjørhom MB Fenstad AM Leta TH Hallan G Bruun T Furnes O Gjertsen J Dale H
Full Access

Aim

The current recommendation in Norway is to use four doses of a first-generation cephalosporin (cefazolin or cephalotin) as systemic antibiotic prophylaxis (SAP) the day of surgery in primary joint arthroplasty. Due to shortage of supply, scientific development, changed courses of treatment and improved antibiotic stewardship, this recommendation has been disputed. We therefore wanted to assess if one dose of SAP was non-inferior to four doses in preventing periprosthetic joint infection (PJI) in primary joint arthroplasty.

Method

We included patients with primary hip- and knee arthroplasties from the Norwegian Arthroplasty Register and the Norwegian Hip Fracture Register for the period 2005-2023. We included the most used SAPs (cephalotin, cefazolin, cefuroxime, cloxacillin and clindamycin), administered as the only SAP in 1-4 doses, starting preoperatively. Risk of revision (Hazard rate ratio; HRR) for PJI was estimated by Cox regression analyses with adjustment for sex, age, ASA class, duration of surgery, reason for- and type of arthroplasty, and year of primary arthroplasty. The outcome was 1-year reoperation or revision for PJI. Non-inferiority margins were calculated for 1, 2 and 3 doses versus reference of 4 doses of SAP at the day of surgery, against a predetermined limit of 15% increased risk of PJI.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 16 - 16
22 Nov 2024
Høvding P Hallan G Furnes O Dale H
Full Access

Background and purpose

Previous publications have reported an increased but levelling out risk of revision for infection after total hip arthroplasty (THA) in Norway. We assessed the changes in risk of major (cup and/or stem, 1- or 2-stage) and minor revisions (debridement, exchange of modular parts, antibiotics and implant retention (DAIR)) for infection after primary THAs reported to the Norwegian Arthroplasty Register (NAR) over the period 2005-2022.

Patients and methods

Primary THAs reported to the NAR from 2005 to 2022 were included. Time was stratified into time periods (2005-2009, 2010-2018, 2019-2022) based on a previous publication. Cox regression analyses, adjusted for sex, age and ASA-classification, with the first revision for infection were performed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 33 - 33
24 Nov 2023
Pilskog K Høvding P Fenstad AM Inderhaug E Fevang JM Dale H
Full Access

Aim

Ankle fracture surgery comes with a risk of fracture-related infection (FRI). Identifying risk factors are important in preoperative planning, in management of patients, and for information to the individual patient about their risk of complications. In addition, modifiable factors can be addressed prior to surgery. The aim of the current paper was to identify risk factors for FRI in patients operated for ankle fractures.

Method

A cohort of 1004 patients surgically treated for ankle fractures at Haukeland University hospital in the period of 2015–2019 was studied retrospectively. Patient charts and radiographs were assessed for the diagnosis of FRI. Binary logistic regression was used in analyses of risk factors. Regression coefficients were used to calculate the probability for FRI based on the patients’ age and presence of one or more risk factors.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 10 - 10
24 Nov 2023
Pilskog K Høvding P Fenstad AM Inderhaug E Fevang JM Dale H
Full Access

Aim

Surgical treatment of ankle fractures comes with a substantial risk of complications, including infection. An unambiguously definition of fracture-related infections (FRI) has been missing. Recently, FRI has been defined by a consensus group with a diagnostic algorithm containing suggestive and confirmatory criteria. The aim of the current study was to report the prevalence of FRI in patients operated for ankle fractures and to assess the applicability of the diagnostic algorithm from the consensus group.

Method

Records of all patients with surgically treated ankle fractures from 2015 to 2019 were retrospectively reviewed for signs of postoperative infections. Patients with suspected infection were stratified according to confirmatory or suggestive criteria of FRI. Rate of FRI among patients with confirmatory and suggestive criteria were calculated.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 67 - 67
1 Oct 2022
Dale H Fenstad AM Hallan G Overgaard S Pedersen AB Hailer NP Kärrholm J Rolfson O Eskelinen A Mäkelä K Furnes O
Full Access

Aim

Previous publications have suggested that the incidence of revisions due to infection after THA is increasing. We performed updated time-trend analyses of risk and timing of revision due to infection after primary THAs in the Nordic countries during the period 2004–2018.

Methods

569,463 primary THAs reported to the Nordic Arthroplasty Register Association from 2004 through 2018 were studied. We estimated adjusted hazard ratios (aHR) with 95% confidence interval by Cox regression with the first revision due to infection after primary THA as endpoint. The risk of revision was investigated. In addition, we explored changes in the time span from primary THA to revision due to infection.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 37 - 37
1 Oct 2022
Lutro O Mo S Leta TH Fenstad AM Tjørhom MB Bruun T Hallan G Furnes O Dale H
Full Access

Aim

In recent years, many studies on revision for infection after arthroplasty have been published. In national arthroplasty registers, revision for infection is defined as surgical debridement, with or without removal or exchange of the entire or parts of the prosthesis due to deep infection, and should be reported to the register immediately after surgery. The diagnosis of infection is made at the surgeon's discretion, based on pre- and perioperative assessment and evaluation, and is not to be corrected to the register based on peroperative bacterial cultures. Due to this lack of validation, the rate of revision for infection will only be an approximation of the true rate of periprosthetic joint infection (PJI). Our aim was to validate the reporting of infection after total hip arthroplasty, and to assess if revisions for infection actually represented true PJI.

Methods

We investigated the reported revisions for infection and aseptic loosening after total hip arthroplasty from 12 hospitals, representing one region of the country, reported during the period 2010–2020. The electronic patient charts were investigated for information on surgical treatment, use of antibiotics, biochemistry and microbiology findings. PJI was defined as growth of at least two phenotypically identical microbes in perioperative tissue samples. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1662 - 1669
1 Dec 2020
Pollmann CT Gjertsen J Dale H Straume-Næsheim TM Dybvik E Hallan G

Aims

To compare the functional outcome, health-related quality of life (HRQoL), and satisfaction of patients who underwent primary total hip arthroplasty (THA) and a single debridement, antibiotics and implant retention (DAIR) procedure for deep infection, using either the transgluteal or the posterior surgical approach for both procedures.

Methods

The study was registered at clinicaltrials.gov (ID: NCT03161990) on 15 May 2017. Patients treated with a single DAIR procedure for deep infection through the same operative approach as their primary THA (either the transgluteal or the posterior approach) were identified in the Norwegian Arthroplasty Register and given a questionnaire. Median follow-up after DAIR by questionnaire was 5.5 years in the transgluteal group (n = 87) and 2.5 years in the posterior approach group (n = 102).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 90 - 90
1 Dec 2019
Langvatn H Schrama JC Engesæter LB Hallan G Furnes O Lingaas E Walenkamp G Dale H
Full Access

Aim

The aim of this study was to assess the influence of the true operating room (OR) ventilation on the risk of revision due to infection after primary total hip arthroplasty (THA) reported to the Norwegian Arthroplasty Register (NAR).

Method

40 orthopedic units were included during the period 2005 – 2015. The Unidirectional airflow (UDAF) systems were subdivided into small-area, low-volume, vertical UDAF (lvUDAF) (volume flow rate (VFR) (m3/hour) <=10,000 and diffuser array size (DAS) (m2) <=10); large-area, high-volume, vertical UDAF (hvUDAF) (VFR >=10,000 and DAS >=10) and Horizontal UDAF (H-UDAF). The systems were compared to conventional, turbulent ventilation (CV) systems. The association between revision due to infection and OR ventilation was assessed using Cox regression models, with adjustments for sex, age, indication for surgery, ASA-classification, method of fixation, modularity of the components, duration of surgery, in addition to year of primary THA. All included THAs received systemic, antibiotic prophylaxis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 19 - 19
1 Dec 2018
Leta TH Lygre SHL Høvding P Schrama J Hallan G Dale H Furnes O
Full Access

Background

Periprosthetic joint infection (PJI) after knee arthroplasty surgery remains a serious complication. Yet, there is no international consensus on the surgical treatment of PJI. The purpose was to assess the prosthesis survival rates, risk of re-revision, and mortality rate following the different surgical strategies (1-stage or 2-stage implant revision, and irrigation and debridement (IAD) with implant retention) used to treat PJI.

Methods

The study was based on 653 total knee arthroplasties (TKAs) revised due to PJI in the period 1994 to 2016. Kaplan-Meier (KM) and multiple Cox regression analyses were performed to assess the survival rate of these revisions and the risk of re-revisions. We also studied the mortality rates at 90 days and 1 year after revision for PJI.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 28 - 28
1 May 2018
Wilkinson J MacInnes S Hatzikotoulas K Fenstad A Shah K Southam L Tachmazidou I Hallan G Dale H Panoutsopoulou K Furnes O Zeggini E
Full Access

Introduction

Periprosthetic osteolysis resulting in aseptic loosening is a leading cause for total hip arthroplasty (THA) failure. Individuals vary in their susceptibility to osteolysis, and it is thought that heritable factors contribute to this variation. We conducted two genome-wide association studies to identify genetic risk loci associated with osteolysis and genetic risk loci associated with time to prosthesis failure due to osteolysis.

Patients/Materials & Methods

The Norway cohort comprised 2,624 subjects after THA recruited from the Norwegian Arthroplasty Registry, 779 with revision surgery for osteolysis. The UK cohort comprised 890 subjects recruited from hospitals in the north of England, 317 with radiographic evidence or revision surgery for osteolysis. All subjects had received a fully cemented or hybrid THA using small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis failure were undertaken after genome-wide genotyping. Finally, a meta-analysis of the discovery datasets was undertaken.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 50 - 50
1 Dec 2016
Lutro O Dale H Sjursen H Schrama JC Høvding P Bartz-Johannessen CA Hallan G Engesæter LB
Full Access

Aim

To see what surgical strategy was used in treating infected total hip arthroplasties (THA), relative to bacterial findings, level of inflammation, length of antibiotic treatment (AB) and re-revisions. Further, to assess the results of treatment after three months and one year.

Method

We used our national arthroplasty register (NAR) to identify THA revised for deep infection from 2004–2015 reported from our hospital. We identified the strategy of revision, i.e. one-stage exchange (one-stage), two-stage exchange (two-stage), debridement and implant retention (DAIR), or Girdlestone, and reported re-revisions for infection. We defined cure as no AB, no need for further surgery and joint with prosthesis (not Girdlestone).

From the hospitals’ medical records we retrieved bacterial findings from the revisions, level of C-reactive protein (CRP), type of antibiotics given, duration of antibiotic therapy and clinical data regarding the patients. The information reported to the NAR was also validated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 87 - 87
1 Dec 2016
Langvatn H Schrama JC Engesæter LB Lingaas E Dale H
Full Access

Aim

The aim of this study was to validate the information on operating room ventilation reported to the Norwegian Arthroplasty Register (NAR) and to assess the influence of this ventilation on the risk of revision due to infection after primary total hip arthroplasty (THA).

Method

Current and previous ventilation systems were evaluated together with the hospitals head engineer in 40 orthopaedic hospitals. The ventilation system of each operating room was assessed and confirmed as either conventional ventilation, vertical laminar airflow (LAF) or horizontal LAF. We then identified cases of first revision due to deep infection after primary THA and the type of ventilation system reported to the NAR in the period 1987–2014. The association between revision due to infection and operating room ventilation was estimated by relative risks (RR) in a Cox regression model.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 93 - 93
1 Dec 2015
Langvatn H Dale H Engesæter L Schrama J
Full Access

The aim of this study was to validate the information on operating room ventilation reported to the Norwegian Arthroplasty Register (NAR). We then wanted to assess the influence of operating room ventilation on the rate of revision due to infection after primary THA performed in operating rooms with conventional ventilation, “greenhouse”–ventilation and Laminar Airflow ventilation (LAF).

We identified cases of THA revisions due to deep infection and the type of ventilation system reported to the NAR from the primary THA. We included 5 orthopaedic units reporting 17947 primary THAs and 136 (0.8%) revisions due to infection during the 28 year inclusion period from 1987 to 2014. The hospitals were visited and the current and previous ventilation systems were evaluated together with the hospitals head engineer, and the factual ventilation on the specific operating rooms was thereby assessed. The association between revision due to infection and operating room ventilation was estimated by calculating relative risks (RR) in a Cox regression model.

73% of the primary THAs were performed in a room with LAF, in contrast to the reported 80 % of LAF. There was similar risk of revision due to infection after THA performed in operating rooms with laminar air flow compared to conventional ventilation (RR=0.7, 95 % CI: 0.2–2.3) and after THA performed in operating rooms with “greenhouse”-ventilation compared to conventional ventilation (RR=1.2, 0.1–11).

Surgeons are not fully aware of what kind of ventilation there is in the operating room. This study may indicate that, concerning reduction in incidence of THA infection, LAF does not justify the substantial installation cost. The numbers in the present study are too small to conclude strongly. Therefore, the study will be expanded to include all hospitals reporting to the NAR.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 334 - 334
1 Sep 2012
Engesaeter L Dale H Hallan G Schrama J Lie S
Full Access

Introduction

Infection after total hip arthroplasty is a severe complication. Controversies still exist as to the use of cemented or uncemented implants in the revision of infected THAs. Based on the data in the Norwegian Arthroplasty Register (NAR) we have studied this topic.

Material and Methods

During the period 2002–2008 45.724 primary THAs were reported to NAR. Out of these 459 were revised due to infection (1,0%). The survival of the revisions with uncemented prostheses were compared to revisions with cemented prostheses with antibiotic loaded cement and to cemented prostheses with plain cement. Only prostheses with the same fixation both in acetabulum and in femur were included in the study. Cox-estimated survival and relative revision risks were calculated with adjustments for differences among groups in gender, type of surgical procedure, type of prosthesis, and age at revision.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 334 - 334
1 Jul 2011
Dale H Hallan G Espehaug B Havelin LI Engesæter LB
Full Access

Background and Purpose: The purpose of the present study was to assess the risk for revision due to deep infection for primary uncemented total hip arthroplasties (THAs) reported to the Norwegian Arthroplasty Register (NAR) over the period 1987–2007.

Methods: All primary uncemented THAs reported to NAR from the period 1987–2007 were studied. Adjusted Cox regression analyses with first revision due to deep infection as the end-point were performed. Changes in the revision rate as a function of year of operation were investigated, as was impact of risk factors (gender, age, type of diagnosis, duration of surgery, operation room ventilation and systemic antibiotic prophylaxis) on risk for revision due to deep infection.

Results: 14,348 primary uncemented THAs met the inclusion criteria. 97 THAs had been revised due to deep infection (5-year survival 99.56). Risk for revision due to deep infection increased through the period studied. Compared to the uncemented THAs implanted 1987–1992, the risk for revision due to infection was 1.2 times higher (95%CI 0.6–2.4, p=0.6) for those implanted 1993–1997, 1.4 times (95%CI 0.7–2.9, p=0.3) for 1998–2002, and 5.3 times (95%CI 2.6–10.7, p=< 0.001) for 2003–2007. The increase in risk for revision due to infection for primary uncemented THAs was most pronounced after the year 2000. No risk factor registered had any statistically significant impact on risk for revision due to infection in this study.

Interpretation: The results of this study indicate an increase in incidence of deep infection after uncemented THAs during the period 1987–2007. Concomitant changes in confounding factors, however, complicate the interpretation of these results.