Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 82 - 82
1 Jan 2017
Dozza B Lesci I Della Bella E Martini L Fini M Lucarelli E Donati D
Full Access

Demineralized bone matrix (DBM) is a natural, collagen-based, well-established osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM osteoinductivity.

Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1–2 mm), medium (M, 0.5–1 mm), and small (S, < 0.5 mm). After demineralization, the three DBM samples were characterized by DTA analysis, XRD, ICP-OES, and FTIR. Data clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. The in vivo study showed that only DBM-M was able to induce new bone formation in a subcutaneous ectopic mouse model. When sheep MSC were seeded onto DBM particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. Gene expression analysis performed on recovered implants supports the histological results and underlines the supportive role of MSC in DBM osteoinduction through the regulation of host cells. In conclusion, our results show a relation between DBM particle size, structural modification of the collagen and in vivo osteoinductivity. The medium particles represent a good compromise between no modification (largest particles) and excessive modification (smallest particles) of collagen structure, yielding highest osteoinduction. We believe that these results can guide researchers to use DBM particles of 0.5–1 mm size range in applications aimed at inducing new bone formation, obtaining results more comparable and reliable among different research groups. Furthermore, we suggest to carefully analyze the structure of the collagen when a collagen-based biomaterial is used alone or in association with cells to induce new bone formation.