We have developed a novel technique to analyse bone, using imaging mass cytometry (IMC) without the constraints of using immunofluorescent histochemistry. IMC can measure the expression of over 40 proteins simultaneously, without autofluorescence. We analysed mitochondrial respiratory chain (RC) protein deficiencies in human bone which are thought to contribute to osteoporosis with increasing age. Osteoporosis is characterised by reduced bone mineral density (BMD) and fragility fractures. Humans accumulate mitochondrial mutations and RC deficiency with age and this has been linked to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of 30 onwards, coincidently the age BMD begins to decline. Mitochondria contain their own genome which accumulates somatic variants at around 10 times the rate of nuclear DNA. Once these mutations exceed a threshold, RC deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model expresses a proof-reading deficient version of PolgA, a mtDNA polymerase. These mice accumulate mutations 3-5 times higher than wild-type mice showing enhanced levels of age-related osteoporosis and RC deficiency in osteoblasts. Bone samples were analysed from young and old patients, developing a protocol and analysis framework for IMC in bone tissue sections to analyse osteoblasts in-situ for RC deficiency. Samples from the femoral neck of 10 older healthy volunteers aged 40 – 85 were compared with samples from young patients aged 1-19. We have identified RC complex I defect in osteoblasts from 6 of the older volunteers, complex II defects in 2 of the older volunteers, complex IV defect in just 1 older volunteer, and complex V defect in 4 of the older volunteers. These observations are consistent with the PolgD257A/D257A mouse-model and suggest that RC deficiency, due to age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis.
There is significant variation and inconsistencies in the current advice and information delivered to patients undergoing total hip replacement (THR). The aim of this study was to assess a locally developed web-based electronic resource system for patients undergoing total hip replacement (THR) surgery to see if this improves and standardises the content, structure, and delivery of information delivered to patients prior to and after surgery. Prospective study with patients recruited in clinic when listed for THR surgery. Patients are emailed login details for the web based electronic resource system (GoWellHealth). The platform delivers content in a time-lined fashion and is individualised to the patient. Data gathered includes the number of patients registering to use this system, their engagement and use of the resources, and results from forms and questionnaires administered.Background
Patients/Materials and Methods
The pathogenesis of falling bone mineral density (BMD) as a universal feature of advancing age is poorly understood1. Frequently culminating in the development of osteoporosis, the process is attributable to more than 500,000 fragility fractures occurring every year in the UK Such injuries are associated with great levels of morbidity, mortality and a £3.5 billion cost to the healthcare economy2. With age, humans are known to accumulate somatic mitochondrial DNA (mtDNA) mutations in mitotic and post mitotic tissue, and stem cell precursors3. Compelling evidence in recent years, particularly that provided by animal models suggests that these mutations are intrinsic to the ageing process4–6. We provide evidence for the first time that mitochondrial dysfunction contributes significantly to the failure of bone homeostasis and falling BMD. We have utilised a mouse model that accumulates mtDNA mutations at 3–5 times the rate of normal mice, consequently ageing and developing osteoporosis prematurely7, to clearly demonstrate that osteoblasts are vulnerable to mtDNA mutations. We have developed a new quadruple immunofluorescent assay to show that mitochondrial respiratory chain dysfunction occurs in osteoblasts as a consequence (p < 0.0001). We show that this mitochondrial dysfunction is associated with reduced BMD in female and male mice by 7 (p = 0.003) and 11 (p = 0.0003) months of age respectively. Using osteoblasts derived from mesenchymal stem cells extracted from male and female mice with mitochondrial dysfunction aged 4, 7 and 11 months, we demonstrate a vastly reduced capacity to produce new mineralised bone
Osteochondroma is the most common benign bone tumour. The risk of sarcomatous change in an isolated lesion is approximately 1%. We report a case of an isolated osteochondroma which appeared benign on clinical and plain radiographic examination but routine histological analysis revealed non-Hodgkin’s lymphoma in the underlying bone. This association has not previously been reported and the case emphasises the importance of routine histological analysis, even if a lesion appears benign.
The effect of screw geometry on the pullout strength of Anterior Cruciate Ligament [ACL] reconstruction is well documented. Most research has looked at the effect of screw length and diameter, however other factors such as the degree of taper may also be important. Tapered screws should in theory be associated with increased pullout strength. This has not been demonstrated either clinically or A parallel and tapered screw were manufactured which were identical in all other respects. Sixty superficial digital flexors from the hind legs of sheep were harvested. The tendons were paired and combined to form a quadruple tendon reconstruction of approximately 7mm diameter as measured with graft sizer. An ACL reconstruction was performed on the proximal tibia of 30 bovine knees, which had been harvested in right and left knee pairs, using the quadruple tendon. Fifteen reconstructions were fixed using tapered screws and fifteen with non-tapered screws. The insertion torque of both tapered and non tapered screws were recorded using an instrumented torque screwdriver. The reconstructions were mounted in an Instron materials testing machine with an x-ray bearing system to eliminate horizontal forces, to ensure that the forces were all directed along the line of the tibial tunnel. The maximum pullout strengths were recorded in each case. Five knee pairs were subjected to bone densitometry scanning to ensure that any difference in pull out strength was not due to changes in bone density between right and left knee pairs. Results indicated that there was no difference between right and left knee pairs [p = 0.58] and that tapered screws were associated with significantly higher pull-out strengths [p=0.007] and insertion torques [p = 0.001].