Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 115 - 115
1 May 2016
Dold P Pandorf T Flohr M Preuss R Bone M Holland J Deehan D
Full Access

INTRODUCTION

Deformation of modular acetabular press-fit shells is of much interest for surgeons and manufacturers. Initial fixation is achieved through press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of modular systems and may adversely affect integrity and durability of the components and tribology of the bearing. The aim of the study was to show shell deformation as a function of bone and shell stiffness.

METHODS

The stiffness of the generic shells was determined using a uniaxial/ two point loading frame by applying different loads, and the change in dimension was measured by a coordinate measurement machine (CMM). Cadaver lab deformation measurements were done before and after insertion for 32 shells with 2 wall thicknesses and 11 shell sizes using the ATOS Triple Scan III (ATOS) optical system previously validated as a suitable measurement system to perform those measurements. Multiple deformation measurements per cadaver were performed by using both hip sides and stepwise increasing the reamed acetabulum by at least 1 mm, depending on sufficient residual bone stock. The under-reaming was varied between 0mm and 1mm, respectively. From the deformations, the resulting forces on the shells and bone stiffness were calculated assuming force equilibrium as well as linear-elastic material behaviour in each point at the rim of the shell.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 114 - 114
1 Jan 2016
Dold P Bone M Flohr M Preuss R Joyce TJ Deehan D Holland J
Full Access

INTRODUCTION

Deformation of modular acetabular press-fit shells is a topic of much interest for surgeons and manufacturer. Such modular components utilise a titanium shell with a liner manufactured from metal, polyethylene or ceramic. Initial fixation is achieved through a press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of inserting the bearing liner into the acetabular shell for modular systems. This may adversely affect the integrity and durability of the components and the tribology of the bearing.

OBJECTIVE

Most clinically relevant data to quantify and understand such shell deformation can be achieved by cadaver measurements. ATOS Triple Scan III was identified as a measurement system with the potential to perform those measurements. The study aim was to validate an ATOS Triple Scan III optical measurement system against a co-ordinate measuring machine (CMM) using in-vitro testing and to check capability/ repeatability under cadaver lab conditions.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 473 - 477
1 Apr 2015
Bone MC Dold P Flohr M Preuss R Joyce TJ Aspden RM Holland J Deehan D

Concerns have been raised that deformation of acetabular shells may disrupt the assembly process of modular prostheses. In this study we aimed to examine the effect that the strength of bone has on the amount of deformation of the acetabular shell. The hypothesis was that stronger bone would result in greater deformation. A total of 17 acetabular shells were inserted into the acetabula of eight cadavers, and deformation was measured using an optical measuring system. Cores of bone from the femoral head were taken from each cadaver and compressed using a materials testing machine. The highest peak modulus and yield stress for each cadaver were used to represent the strength of the bone and compared with the values for the deformation and the surgeon’s subjective assessment of the hardness of the bone. The mean deformation of the shell was 129 µm (3 to 340). No correlation was found between deformation and either the maximum peak modulus (r² = 0.011, t = 0.426, p = 0.676) or the yield stress (r² = 0.024, t = 0.614, p = 0.549) of the bone. Although no correlation was found between the strength of the bone and deformation, the values for the deformation observed could be sufficient to disrupt the assembly process of modular acetabular components.

Cite this article: Bone Joint J 2015; 97-B:473–7.