Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 325 - 325
1 Jul 2014
Dunn S Crawford A Wilkinson M Bunning R Le Maitre C
Full Access

Summary Statement

IL-1β stimulation of human OA chondrocytes induces NFκB, ERK1/2, c-JUN, IκB and P38 signalling pathways. Pre-treatment with cannabinoid WIN-55 for 48 hours inhibits certain pathways, providing mechanisms for cannabinoids inhibitory actions on IL-1β induced cartilage degradation.

Matrix metalloproteinases (MMPs) are involved in extracellular matrix (ECM) breakdown in osteoarthritis (OA) and their expression is regulated by nuclear factor kappa B (NFκB). In addition signalling pathways ERK1/2, c-JUN, IκB and P38 are activated in OA and are induced by inflammatory cytokine interleukin 1 (IL-1). Cannabinoids have been shown to reduce joint damage in animal models of arthritis. Synthetic cannabinoid WIN-55, 212-2 mesylate (WIN-55) significantly reduces IL-1β induced expression of MMP-3 and -13 in human OA chondrocytes, indicating a possible mechanism via which cannabinoids may act to prevent ECM breakdown. Here the effects of WIN-55 on IL-1β induced NFκB, ERK1/2, c-JUN, IκB and P38 phosphorylation in human OA chondrocytes has been investigated.

Primary human chondrocytes were obtained from articular cartilage removed from patients with symptomatic OA during total knee replacement (Ethic approval:SMB002). Cartilage tissue was graded macroscopically 0–4 using the Outerbridge Classification method. Chondrocytes isolated from grade 2 cartilage and cultured in monolayer were pre-treated with 10 μM WIN-55 for 1 hour prior to stimulation with 10 ng/ml IL-1β for 30 minutes for investigation of NFκB, c-JUN, IκB and P38 phosphorylation. In addition chondrocytes were pre-treated with 10 μM WIN-55 for 30 minutes, 1, 3, 6, 24 and 48 hours prior to 10 ng/ml IL-1β stimulation for 30 minutes to investigate ERK1/2 phosphorylation.

Dimethyl sulfoxide (DMSO) was used as a vehicle control at 0.1%. Immunocytochemistry was used to investigate the phosphorylation and translocation of NFκB. ERK1/2, c-JUN, IκB, and P38 activation was investigated using cell based ELISA. Immunocytochemical analysis showed chondrocytes stimulated with IL-1β induced NFκB phosphorylation and translocation to the nucleus.

Chondrocytes treated with IL-1β with WIN-55 for 1 hour pre-treatment showed no inhibition of the IL-1β induced NFκB phosphorylation and translocation to the nucleus. WIN-55 treatment alone for 1 hour stimulated NFκB phosphorylation in the cytoplasm but not the nucleus. ELISA showed that phosphorylation of ERK1/2, c-JUN, IκB, and P38 was significantly induced by IL-1β following 30 minutes stimulation (p<0.05). Pre-treatment with WIN-55 for 1 hour had no significant effect on this IL-1β induced phosphorylation. However WIN-55 pre-treatment for 48 hours prior to IL-1β stimulation for 30 minutes, resulted in a significant decrease in ERK1/2 phosphorylation compared to IL-1β stimulation alone (p<0.05).

WIN-55 treatment alone for 1 hour significantly induced c-JUN phosphorylation (p<0.05), but had no effect on IκB and P38 phosphorylation compared to DMSO control. IL-1β stimulation of ERK1/2 phosphorylation was not significantly affected by WIN-55 pre-treatment of 30 minutes, 1, 3, 6 and 24 hours. WIN-55 treatment alone for 48 hours significantly reduced ERK1/2 phosphorylation compared to DMSO control (p<0.05). WIN-55 treatment alone for 30 min, 1, 3, 6 and 24 hours had no significant effect on ERK1/2 phosphorylation compared to DMSO control. The results show that following 48 hours pre-treatment WIN-55 inhibits IL-1β induced ERK1/2 phosphorylation in human OA chondrocytes. Thus inhibitory effects of cannabinoids on IL-1β induced cartilage degradation may be mediated via modulation of ERK1/2 signalling.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 299 - 299
1 Jul 2014
Daniels J Phillips K Binch A Chiverton N Breakwell L Micheal A Cole A Dunn S Le Maitre C
Full Access

Summary

Anabolic and catabolic signalling processes within IVDs display overlapping pathways, however some pathways were identified as selective to catabolic signalling and inhibition of one of these pathways inhibited some of the catabolic factors induced by IL-1 although NFkB inhibition also affected anabolic expression.

Degeneration of intervertebral discs (IVDs) is implicated in 40% of low back pain cases. In the normal disc the balance between anabolic and catabolic processes are carefully balanced. During degeneration this balance is lost in favour of catabolic processes which lead to degradation of the IVD, infiltration of blood vessels and nerves and release of cytokines which sensitise nerves to pain. Interleukin 1 (IL-1) is known to be important in the pathogenesis of IVD degeneration, here we investigated the intracellular signalling pathways activated by IL-1 and those activated by an anabolic factor (CDMP-1) to investigate differential pathways.

Human nucleus pulposus cells (NP) removed during discetomy for nerve root pain were stimulated with IL-1 or CDMP-1 for 30 minutes. Site-specific phosphorylation of 46 signalling molecules were identified using R&D proteome array. The activation of ERK1/2, p38, c-jun, and IkB were confirmed using cell based ELISAs, in addition pNFκB localisation in stimulated cells was determined using immunohistochemisty. Pre-treatment with inhibitors to p38, and NFkB for 30 minutes, followed by stimulation with IL-1 (10ng/mL) or CDMP-1 (10ng/mL) for 24 hours was investigated to determine effects on anabolic and catabolic factors. In addition localisation of phosphorylated c-jun, p38 and NFkB were investigated within paraffin embedded sections of human IVD to investigate the presence of active pathways in vivo.

Twenty intracellular signalling pathways were activated following CDMP-1 treatment and 8 signalling pathways activated by IL-1. Of note key classical IL-1 signalling pathways p38 MAPK, ERK 1/2 and JNK were activated by IL-1, however of these ERK 1/2 particularly was also activated by CDMP-1, whilst p38 and c-jun were only activated by IL-1. IL-1 induced activation of NFkB signalling to a greater extent than CDMP-1, these results were confirmed by the ‘in cell ELISAs’. IVD tissue samples displayed immunopositive staining for phosphorylated c-jun, NFkB and p38. Inhibition of p38 signalling inhibited IL-1 induced MMP 13 expression, but had little effect on the induction of IL-8. However inhibitors of NFkB signalling pathway failed to inhibit the induction of MMP 13 but abrogated the induced IL-6 and IL-8 expression. IL-1 induced a complete aberration of aggrecan expression by NP cells in alginate culture, this effect was partly inhibited by p38 MAPK inhibitor but was completely restored by inhibiting NFkB signalling. However the aggrecan expressed in CDMP-1 treated cells was decreased by inhibiting NFkB but not p38.

Here, we have shown that anabolic and catabolic signalling processes within IVDs show a number of overlapping pathways, however a number of differential pathways were identified and inhibition of p38 MAPK and NFkB pathways inhibited a number of catabolic processes investigated which were induced by IL-1. Thus inhibition of signalling pathways could be a novel mechanism of inhibiting catabolic processes which could hold promise to inhibit degeneration at early stages of disease but also create the correct tissue niche to promote regeneration of the disc.