Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 125 - 125
1 Jan 2016
Moussa M Esposito C Elpers M Wright T Padgett DE
Full Access

Introduction

Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized zirconium metal (Oxinium®, Smith & Nephew) was developed to reduce the amount of polyethylene wear as compared to cobalt chromium femoral heads, without the risk of brittle fracture seen with older generation ceramics. There are a limited number of retrieval studies evaluating the performance of Oxinium in THA. The aims of this study were 1) to visually assess damage on the surface of a large number of retrieved Oxinium femoral heads, 2) to measure surface roughness of scratches on the surfaces of Oxinium femoral heads, and 3) to use scanning electron microscopy (SEM) to assess the integrity of the oxidized zirconium surface in damaged areas. BIOLOX delta (CeramTec), a ceramic alternative to Oxinium, was included in this study for comparison.

Methods

From 2006 to 2013, 59 retrieved Oxinium femoral heads in THAs were collected after an average time to revision surgery of 1.64 years. The mean patient age was 61.9 years, with 32 males and 27 females. Reasons for revision surgery were recurrent dislocation (24), femoral component loosening or subsidence (13), infection (9), acetabular loosening (4), periprosthethic fracture (4), acetabular malposition (2), heterotopic ossification (2), and 1 case of leg length discrepancy. The diameters of the femoral heads were 28 mm (9), 32 mm (22), 36mm (26) and 40mm (2).

Three observers visually graded surface damage on all femoral heads according to the following criteria: 1) no scratches, 2) minimal damage with one to two scratches, 3) significant damage with multiple scratches. We measured the surface roughness of retrieved Oxinium and BIOLOX delta femoral heads with an interferomic profiler, and SEM to evaluate the extent of surface effacement.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 302 - 302
1 Dec 2013
Nam D Elpers M Boydston-White S Ast M Padgett DE Wright T
Full Access

Introduction:

Concerns remain regarding both the toughness of alumina, and stability of zirconia ceramics in total hip arthroplasty (THA). A zirconia-toughened alumina (ZTA) bearing has been introduced, in which yttria-stabilized, zirconia polycrystals are uniformly distributed in an alumina matrix. The goal is to combine the wear resistance of alumina with the toughness of zirconia. Zirconia's toughness is attributed to a tetragonal to monoclinic (t-m) phase transformation that occurs in response to a crack, hindering its propagation; however, it might decrease material stability. The purposes of this study were to investigate the degree and position of metal transfer, and the occurrence of t-m phase transformation using Raman spectroscopy, in a series of retrieved, ZTA femoral heads.

Materials and Methods:

Twenty-seven ZTA femoral heads were reviewed as part of an IRB-approved implant retrieval program. All acetabular liners were composed of highly cross-linked polyethylene. The length of implantation, age, body mass index (BMI), sex, and reason for revision were recorded.

Two independent graders assessed each femoral head for metal transfer over three regions (apex, equator, and below equator), using a previously validated grading system (Figure 1). The female trunnion of each head was graded in two regions: the deep and superficial 50% (Figure 2).

Raman spectra were collected with a confocal Raman imaging system (alpha300 R, WITec, Knoxville, TN) operating a 488 nm laser, using a microscope objective of 20X. Three scans were taken in each of the aforementioned regions of the femoral head surface. Scans were also performed in regions of visible wear or metal transfer.

Interobserver correlation coefficients for the measurement of metal transfer between the two graders were determined. One-way ANOVAs were used to compare differences of metal transfer between the 3 surface regions (p < 0.05 = significant).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 472 - 472
1 Dec 2013
Padgett DE Stoner K Nassif N Nawabi D Wright T Elpers M
Full Access

Introduction:

Large diameter metal on metal total hip arthroplasty (MOM THA) have shorter lengths of implantation due to increased failure caused by wear either at the articulating surface as well as the taper-trunnion interface. Taper-trunnion wear may be worse in large diameter MOM THA due the increased torque at the taper-trunnion interface. However little has been done to understand how differences in taper-trunnion geometry and trunnion engagement effects wear. The purpose of this study was to (1) measure the differences in taper geometry and trunnion engagement on the head-taper of 11/13, 12/14, and Type 1 taper designs and (2) to determine if taper geometry affects fretting, corrosion, and wear at the taper interface.

Methods:

We identified 54 MOM THA primary revision implants with head diameters greater than 36 mm from our retrieval archive. Patients' charts were queried for demographic information and pre-revision radiographs were measured for cup inclination and cup anteversion. To measure taper geometry and wear the head tapers were imaged using Redlux©. The point clouds obtained from this were analyzed in Geomagic©. Taper angles and contact length where the trunnion engaged with the female taper of the head-tapers were measured. The diameter of the taper at the most distal visual area of trunnion engagement was also measured. Best fit cones were fit to the unworn regions to approximate the pristine surface. Differences between the raw data and the unworn surface were measured and volumetric wear rates were calculated. Fretting and corrosion of the head-taper was graded using the Goldberg Scoring.