Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 72 - 72
1 Dec 2019
Yeung C Lichstein P Varady N Bonner B Carrier C Schwab P Maguire J Chen A Estok D
Full Access

Aim

Knee arthrodesis (KA) and above knee amputation (AKA) have been used for salvage of failed total knee arthroplasty (TKA) in the setting of periprosthetic joint infection (PJI). The factors that lead to a failed fusion and progression to AKA are not well understood. The purpose of our study was to determine factors associated with failure of a staged fusion for PJI and predictive of progression to AKA.

Method

We retrospectively reviewed a single-surgeon series of failed TKA for PJI treated with two-stage KA between 2000 and 2016 with minimum 2-year follow-up. Patient demographics, comorbidities, surgical history, tissue compromise, and radiographic data were recorded. Outcomes were additional surgery, delayed union, Visual Analog Pain scale (VAS) and Western Ontario and McMaster Activity score (WOMAC). No power analysis was performed for this retrospective study. Medians are reported as data were not normally distributed.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 202 - 202
1 Jul 2014
Rowell S Estok D Kreuzer S Malchau H Muratoglu O
Full Access

Summary

Sequentially irradiated and annealed UHMWPE hip and knee retrievals showed subsurface in vivo oxidation in both the articular surface and unloaded surfaces, while three of four never-implanted shelf stored liners had oxidation in the bulk.

Introduction

Highly cross-linked polyethylene was developed to improve the wear resistance of UHMWPE bearing surfaces in total hip arthroplasty. First generation irradiated and annealed polyethylene showed high oxidation in vivo, largely attributed to only the partial-quenching of free radicals, along with additional radicals generated during terminal gamma sterilization. A second generation, three-step sequential irradiation and annealing method was advanced with the promise of better oxidative stability and improved mechanical properties. We hypothesised that without the complete elimination of free radicals combined with gas plasma sterilization requiring oxygen-permeable packaging, that this second generation material would be prone to shelf-oxidation in addition to in vivo oxidation.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 9 - 9
1 Jan 2004
Burroughs B O’Connor D Sargent M Muratoglu O Rubash H Freiberg A Estok D Jasty M Harris W Deluzio K Krevolin J Wyss U Shen M
Full Access

A high proportion of complications following TKR occur at the patellofemoral articulation secondary to delami-nation and adhesive/abrasive wear. Electron beam cross-linking and melting has been shown to substantially reduce delamination and adhesive/abrasive wear in polyethylene tibial inserts. A series of in-vitro patella wear and fatigue tests were developed to explore the benefits of this material at the patellofemoral articulation.

Patellae (NKII, Sulzer Orthopedics, Inc., Austin, TX) were tested on an AMTI (Watertown, MA) knee simulator articulating against the trochlear grove of the femoral component. The simulator controlled flexion/ extension and patellofemoral contact force. Each test included patellae manufactured from conventional and electron beam crosslinked and melted polyethylene. Three different simulations were created: i) normal gait (5 million cycles) with optimal component alignment, ii) stair climbing (2 million cycles) with optimal component alignment, iii) stair climbing (2 million cycles) with 4° of femoral component internal rotation to simulate a component malalignment condition. In the last two simulations all patellae were artificially aged for 35 days in 80°C air to simulate one aspect of the long term oxidative state of each material.

In normal gait, the unaged conventional and highly cross-linked materials demonstrated similar behaviour. In stair climbing with optimal component alignment, the aged conventional patellae developed cracks by 2 million cycles. In stair climbing with component malalign-ment the aged conventional patellae developed cracks and delamination by 1 million cycles. None of the highly cross-linked components showed cracks or delamination. These results demonstrate the potential advantage of highly cross-linked polyethylene for the patella.