The three-dimensional (3D) correction of glenoid
erosion is critical to the long-term success of total shoulder replacement
(TSR). In order to characterise the 3D morphology of eroded glenoid
surfaces, we looked for a set of morphological parameters useful
for TSR planning. We defined a scapular coordinates system based
on non-eroded bony landmarks. The maximum glenoid version was measured
and specified in 3D by its orientation angle. Medialisation was
considered relative to the spino-glenoid notch. We analysed regular
CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When
the maximum version of OA shoulders was higher than 10°, the orientation
was not only posterior, but extended in postero-superior (35%),
postero-inferior (6%) and anterior sectors (4%). The medialisation
of the glenoid was higher in OA than normal shoulders. The orientation
angle of maximum version appeared as a critical parameter to specify
the glenoid shape in 3D. It will be very useful in planning the
best position for the glenoid in TSR. Cite this article:
Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from After one year of use, the volumetric wear was 8.4 mm3 for the anatomical prosthesis, but 44.6 mm3 for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.
The aim of this study was analyse the results of locking plates used for fractures of the proximal humerus and to look for specific complications.
Two modules with 3 miniature capacitive gyroscopes and 3 miniature accelerometers were fixed by a patch on the dorsal side of the distal humerus, and one module with 3 gyroscopes and 3 accelerometers were fixed on the thorax. The subject wore the system during one day (8 hours), at home or wherever he/she went. We used a technique based on the 3D acceleration and the 3D angular velocities from the modules attached on the humerus.
1) an intact joint with a radius of curvature of 24mm for the humeral head and 26mm for the glenoid; 2) an eroded joint with a radius of curvature of 40mm for the humeral head and 42mm for the glenoid. Movements of external rotation (0–45°) and abduction (0–150°) were performed by muscles’ activation. Contact forces caused by muscles wrapping on bony surfaces were accounted for. Joints forces, glenohumeral contact point locations and humeral head translations were calculated for the intact and eroded joint.
All of the patients underwent resection the humeral head or retrieval of the arthroplasty with large debridement followed by implantation of an antibiotic impregnated polymethyl methacrylate spacer. After a mean duration of two months of antibiotics and after normalisation of the CRP a delayed reimplantation of a prosthesis was performed in 6 patients. One patient is awaiting arthroplasty, while two patients are satisfied with the functional result obtained with the spacer and do not want further surgery.
Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed prosthesis with an anatomical implant. Active abduction was simulated from 0° to 150° of elevation. With the anatomical prosthesis, the joint force almost reached the equivalence of body weight. The joint force was half this for the reversed prosthesis. The direction of force was much more vertically aligned for the reverse prosthesis, in the first 90° of abduction. With the reversed prosthesis, abduction was possible without rotator cuff muscles and required 20% less deltoid force to achieve it. This force analysis confirms the potential mechanical advantage of reversed prostheses when rotator cuff muscles are deficient.