Soft tissue balancing of the “flexion gap” has a direct affect on patello-femoral tracking. Both of which are necessary for a well functioning Total Knee Arthroplasty (TKA). Traditionally, successful restoration of soft tissue balance and patellar tracking depend heavily on surgeon experience, empirical judgment and technical skill. Orthopaedic residents often are confronted with the challenge of learning to perform TKA without objective measures with which to assess the accuracy of their surgical technique. Also, the vast majority of TKA’s are performed by surgeons who do less than 25 TKA’s per year. Both populations often rely upon surgical release of the lateral patellar retinacular tissues in order to restore “optimal” patellar tracking. This surgical technique is often associated with division of the lateral geniculate vessels and increased potential for avascular necrosis of the patella and lateral subcutaneous hematoma. Both groups of surgeons would be well served if there were available a means with which they could objectively measure whether or not they have in fact achieved the soft tissue balance they intended and optimal patello-femoral tracking, without the need for a lateral release. Historically, the incidence of lateral release, as a means of improving patellofemoral tracking, has been reported performed in more than 10% of TKA. A prospective group of 200 consecutive TKA’s, performed by two surgeons, in which an electronic means of assessing “flexion gap” balance was retrospectively reviewed for the incidence of intra-operative lateral release. It was found that use of electronic measurement to assure “flexion gap” balance was associated with a significant reduction in the incidence of lateral release required to achieve optimal patello-femoral tracking.
Recent trends in surgical techniques for THR, i.e. MIS and anterior approaches, have spawned an interest in and possible need for shorter femoral prostheses. Although, previously published clinical investigations with custom short stems have reported very encouraging results (Walker, et al, Several basic questions must be addressed. First, what is the purpose of a stem? Second, can stem length be reduced and if so by how much can this be safely done. Third, what are the effects of stem shortening and are there other design criteria which must take on greater importance in the absence of a stem to protect against implant failure. To examine these questions a testing rig was constructed which attempts to simulate the in vivo loading situation of a hip, fig.1(Walker, et, al.). Fresh cadaveric femora were tested with the femora intact and then with femoral components of varying stem length implanted to examine the distribution of stresses within the femur under increasing loads as a function of stem length. This was correlated with observations of prospective DEXA measurement of proximal femoral bone mass and implant migration following THR(Leali, Our studies indicated that a stem is not an absolute requirement in order to achieve a well functioning, stable implant. However in order to reduce the possibility of mechanical failure a reduced stem or stemless implant absolutely must have, inherent to its design, a provision for sufficient contact with both the medial and lateral proximal metaphyseal femur. As well it must also have a flat posterior surface parallel to, and in contact with, the posterior surface of the proximal femoral metaphysis. These conditions will provide support against distal migration as well as bending moments in the A/P plane. As a consequence of this latter condition, appropriate anteversion must be achieved in the neck region of the prosthesis and not by rotation of the implant within the proximal metaphyseal cavity of the femur. In conclusion, this study demonstrates that simply reducing the length of an existing implant to accommodate changes in surgical techniques may not be a reasonable or safe design change. Such shortened versions of existing stem designs should undergo rigorously in vitro testing before being released for implantation.