A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures. An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A comparative analysis provided information about the stability and deformation of the assemblies to be compared.Introduction
Method
In a consecutive retrospective analysis of 190 patients treated with the Masquelet technique at the BG Klinikum Hamburg from January 2012 to January 2022, defect-specific features such as the extent and morphology of the defect were recorded, and their influence on the time to reach full weight-bearing of the affected limb was investigated. A total of 217 defects were treated in 190 patients using the Masquelet technique. 70% of all defects were located in the tibia, followed by 22% in the femur and only about 7% in the upper extremity. The average length of all defects was 58 mm (+/−31 mm), with the largest defect measuring 180 mm and the smallest measuring 20 mm. 89% of the patients achieved full weight-bearing at the end of therapy. The average time from initiation of therapy to reaching safe full weight-bearing was 589 days. There was a significant correlation between defect length and time to reach full weight-bearing (p = 0.0134). These results could serve as a basis for creating a score for prognostics and evaluation of bone healing after treatment with the Masquelet technique. Additionally, the results could help guide indications for secondary stabilization using internal fixation.