Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 106 - 106
4 Apr 2023
Ding Y Luo W Chen Z Guo P Lei B Zhang Q Chen Z Fu Y Li C Ma T Liu J
Full Access

Quantitative ultrasound (QUS) is a promising tool to estimate bone structure characteristics and predict fragile fracture. The aim of this pilot cross-sectional study was to evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragile fractures retrospectively in postmenopausal women.

Methods

RF signal and speed of sound (SOS) were obtained using an axial transmission QUS at oneā€third distal radius for 246 postmenopausal women. Based on the involved RF signal, we conducted a MResNet, which combines multi-channel training with original ResNet, to classify the high risk of fragility fractures patients from all subjects. The bone mineral density (BMD) at lumber, hip and femoral neck acquired with DXA was recorded on the same day. The fracture history of all subjects in adulthood were collected. To assess the ability of the different methods in the discrimination of fragile fracture, the odds ratios (OR) calculated using binomial logistic regression analysis and the area under the receiver operator characteristic curves (AUC) were analyzed.

Results

Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was discriminant for all fragile fractures (OR = 2.64; AUC = 0.74), for Vertebral fracture (OR = 3.02; AUC = 0.77), for non-vertebral fracture (OR = 2.01; AUC = 0.69). MResNet showed comparable performance to that of BMD of hip and lumbar with all types of fractures, and significantly better performance than SOS all types of fractures.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 109 - 109
1 Mar 2021
Zoetebier B Sivasubramaniyan K Puricelli M Fu Y Hendriks J Kock L van Osch G Karperien M
Full Access

Osteoarthritis is the most common chronic condition of the joints. It is characterized by the degeneration of articular cartilage, formation of osteophytes and alterations in the synovium. This process has a severe impact on the quality of life of the patients and the currently available treatments are unsatisfactory and often merely focused on pain relief. In our group we are working on the development of in situ cross-linkable hydrogel platforms that could be used for resurfacing the damaged articular cartilage using a minimally invasive arthroscopic procedure. Stable fixation of the gel at the joint surface, facilitating the ingrowth of local stem and progenitor cell populations and supporting intrinsic repair mechanisms are considered minimal design parameters. To achieve this, we are exploring the use of enzymatically cross-linkable natural polymer-tyramine conjugates.

Dextran-tyramine conjugates were prepared by activation of dextran-OH and subsequent reaction with tyramine. Hyaluronic acid-tyramine and protein-tyramine conjugates were prepared using DMTMM coupling. In situ crosslinking is achieved by mixing the polymer conjugates with the enzyme HRP and minute, non-toxic amounts of H2O2 as oxidizing agent. Support of cartilage formation was studied after mixing of the polymer conjugates with mesenchymal stem cells, chondrocytes or combinations of both prior to crosslinking. Cell ingrowth was studied by implanting the hydrogels in an ex-vivo cartilage defect while mechanically loading the explant in a bioreactor and cell migration in the hydrogels was evaluated by tracking the sprouting of fluorescently labelled cell-spheroids.

We prepared dextran-tyramine conjugates with a degree of substitution of 10 tyramine residues per 100 monosaccharide units. The conjugated hyaluronic acid-tyramine had a degree of substitution of 10% of the carboxylic acid groups, while for the proteins the substitution was dependent on the protein type.

Enzymatically crosslinked hydrogels, based on dextran and hyaluronic acid, with the addition of co-cross linkable proteins show excellent properties for application in the regeneration of damaged cartilage.