There are few studies that have compared between continuous flexion activities and extension activities of normal knees. The purpose of this study is to compare
This study was to investigate the effect of posterior tibial slope (PTS) on the kinematics in the cruciate-retaining total knee arthroplasty (CR-TKA) using 2- to 3- dimensional registration technique. A total of 75 knees in 58 patients were recruited and categorized into the following two groups according to PTS. Group A was categorized PTS under 7degrees (n = 33) and group B was categorized PTS over 7 degrees (n = 42). The average age of group A and group B at the time of fluoroscopic surveillance date was 73.5 ± 7.4 years and 74.3 ± 4.5 years, respectively and the average follow-up period from operation date to fluoroscopic surveillance date was 13.8 ± 9.3 months and 16.7 ± 8.6 months, respectively. In vivo kinematics during sequential deep knee bending under weight-bearing condition were evaluated using fluoroscopic image analysis and 2- to 3- dimensional registration technique. Range of motion (ROM), axial rotation, anteroposterior (AP) translations of medial and lateral nearest points of the femoral component relative to the tibial component were measured and compared between the two groups. The nearest points were determined by calculating the closest distance between the surfaces of femoral component model and the axial plane of coordinate system of the tibial component. We defined external rotation and anterior translation as positive. P values under 0.05 was defined as statistically significant.Purpose
Material & Methods
We hypothesized that using the navigation system, intra-operative knee kinematics after implantation measured may predict that post-operative kinematic in activities of daily living. Our aim was to compare intra-operative knee kinematics by a computed tomography (CT)-based navigation system and post-operative by the 2- to 3-dimensional registration techniques (2D3D). This study were performed for 8 patients (10 knees, medial osteoarthritis) who underwent primary PS TKA using CT-based navigation system. The median follow-up period from operation date to fluoroscopic surveillance date was 13 months (range 5 – 37 months). Navigation and 2D3D had a common coordinate origin for components. Medial and lateral femoral condyle anterior-posterior translation (MFT and LFT) were respectively defined as the distance of the projection of the points (which was set on the top of the posterior femoral pegs) onto the axial plane of the tibial coordinate system. Intraoperative kinematics was measured using the navigation system after final implantation and closure of the retinaculum during passive full flexion and extension imposed by the surgeon. Under fluoroscopic surveillance in the sagittal plane, each patient was asked to perform sequential deep knee flexion under both weight bearing (WB) and non-weight bearing (NWB) conditions from full extension to maximum flexion. Repeated two-way ANOVA (tasks × flexion angles) were used, and then post-hoc test (paired t-tests with Boferroni correction) were performed. The level of statistical significant difference was set at 0.05 on two-way ANOVAs and 0.05 / 3 on post-hoc paired t-tests. Mean range of motion between femoral and tibial components were Intra-operative (Intra): 28.0 ± 9.7, NWB conditions: 120.6 ± 11.1, WB conditions: 125.1 ± 12.9°, respectively. Mean ER (+) / IR (−) from 0° to 120° were Intra-operative (Intra): 9.3 ± 10.2°, NWB conditions: 8.1 ± 8.9, WB conditions: 5.2 ± 7.0, respectively. Mean MFT /LFT from 0° to 90° were Intra; 4.4 ±14.8/ 4.2± 8.5mm, NWB; 6.2 ± 6.9 / 9.2 ± 3.1 mm, WB; 9.2 ± 3.5 / 7.4 ± 2.8 mm, respectively. Mean MFT /LFT from 90° to 120° were Intra; −4.4 ± 2.5 / −5.7 ± 2.9 mm, NWB; −5.5 ± 1.8 / −8.2 ± 0.6 mm, WB; −4.0 ± 1.9 / −5.4 ± 2.3mm, respectively. Mean ADD/ABD from 0° to 120° were Intra;-4.2 ± 3.0, NWB; −0.2 ± 2.1, WB; −0.1 ± 0.8, respectively. Repeated two-way ANOVA showed a significant all interaction on kinematic variables (p<0.05). No statistically significant difference at post-hoc test was found in ER/ IR of all tasks and MFT /LFT of Intra vs NWB and Intra vs WB from 0° to 120° (p>0.05 / 3). The Conditions of these tasks were different from each others. Our study demonstrated that intra-operative kinematics could predict post-operative kinematics.
The purpose of this study is to investigate the three-dimensional (3D) kinematics of normal knees in deep knee-bending motions like squatting and kneeling. Material & Methods: We investigated the in vivo kinematics of 4 Japanese healthy male volunteers (8 normal knees in squatting, 7 normal knees in kneeling). Each sequential motion was performed under fluoroscopic surveillance in the sagittal plane. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femur and tibia from single-view fluoroscopic images. We evaluated the femoral rotation relative to the tibia and anteroposterior (AP) translation of the femoral sulcus and lateral epicondyle on the plane perpendicular to the tibial mechanical axis. Student's t test was used to analyze differences in the absolute value of axial rotation and AP translation of the femoral sulcus and lateral epicondyle during squatting and kneeling. Values of P < 0.05 were considered statistically significant. During squatting, knees were gradually flexed from −2.8 ± 1.3° to 145.5 ± 5.1° on average. Knees were gradually flexed from 100.8 ± 3.9° to 155.6 ± 3.2° on average during kneeling. Femurs during squatting displayed sharp external rotation relative to the tibia from 0° to 30° of flexion and it reached 12.5 ± 3.3° on average. From 30° to 130° of flexion, the femoral external rotation showed gradually, and it reached 19.1 ± 7.3° on average. From 130° to 140° of flexion, it was observed additionally, and reached 22.4 ± 6.1° on average. All kneeling knees displayed femoral external rotation relative to the tibia sharply from 100° to 150° of flexion, and it reached 20.7 ± 7.5° on average. From 100° to 120° of flexion, the femoral external rotation during squatting was larger than that during kneeling significantly. From 120° to 140° of flexion, there was no significant difference between squatting and kneeling. The sulcus during squatting moved 4.1 ± 4.8 mm anterior from 0° to 60° of flexion. From 60° of flexion it moved 13.6 ± 13.4 mm posterior. The sulcus during kneeling was not indicated significant movement with the knee flexion. The lateral epicondyle during squatting moved 39.4 ± 7.7 mm posterior from 0° to 140° of flexion. The lateral epicondyle during kneeling moved 22.0 ± 5.4 mm posterior movement from 100° to 150° of flexion. In AP translation of the sulcus from 100° to 140° of flexion, there was no significant difference between squatting and kneeling. However in that of the lateral epicondyle, squatting groups moved posterior significantly. Even if they were same deep knee-bending, the kinematics were different because of the differences of daily motions. The results in this study demonstrated that in vivo kinematics of deep knee-bending were different between squatting and kneeling.
The effect of the geometry of the tibial polyethylene insert was investigated in vivo loaded conditions. The decision to choose CR (cruciate retaining) insert or CS (condylar stabilised) insert during TKA remains a controversial issue. Triathlon CS type has a condylar stabilised insert with an increased anterior lip that can be used in cases where the PCL is sacrificed but a PS insert is not used. The difference of the knee kinematics between CR and CS insert remains unclear. This study measured knee kinematics of deep knee flexion under load in two insert designs using 2D/3D registration technique.Summary
Introduction