Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost.
Hybrid organo-inorganic sol-gel coatings are proposed as a promising biomaterial improvement3. One of these compounds is a mixture of two organopolisiloxanes: 3-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethylorthosilicate (TMOS). The aim of this work was to evaluate bacterial adhesion on MAPTMS-TMOS coating compared to titanium parts made by powder metallurgy.
MAPTMS-TMOS sol-gel coating was produced using a molar ratio of 1:2 (MAPTMS:TMOS) and dispersed in ethanol. The sol-gel was deposited by dip-coating on titanium parts made by powder metallurgy followed by a thermal treatment at 120 ºC for 30 minutes4. Titanium parts without sol-gel coating were used as control.
The statistical data were analyzed by pairwise comparisons using the nonparametric Mann-Whitney test with a level of statistical significance of p<0.05. Values are cited and represented as medians.
According with our results, MAPTMS-TMOS sol-gel coating is a promising antiadherent surface for