Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 51 - 51
1 Jul 2014
Vanden Berghe P Demol J Gelaude F Vander Sloten J
Full Access

Summary

This work proposes a novel, automatic method to obtain an anatomical reconstruction for 3D segmented bones with large acetabular defects. The method works through the fitting of a Statistical Shape Model to the non-defect parts of the bone.

Introduction

Patient-specific implants can be used to treat patients with large acetabular bone defects (IIa-c, IIIb, Paprosky 1994). These implants require a full 3D preoperative planning that includes segmentation of volumetric images (CT or MRI), extraction of the 3D shape, reconstruction of the bone defect into its anatomic (non-defect) state, design of an implant with a perfect fit and optimal placement of the screws. The anatomic reconstruction of the bone defect will play a key role in diagnosing the amount of bone loss and in the design of the implant. Previous reconstruction methods rely on a healthy contralateral (Gelaude 2007); however this is not always available (e.g. partial scan or implant present). Statistical shape models (SSM) of healthy bones can help to increase the accuracy and usability of the reconstruction and will decrease the manual labor and user dependency. Skadlubowicz (2009) illustrated the use of an SSM to reconstruct pelvic bones with tumor defects; however tumors generally affect a smaller region of the bone so that the reconstruction will be easier than in large acetabular bone defects. Also, the tumor reconstruction method uses 80 manually indicated landmarks, while the proposed method only uses 14.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2013
Gelaude F Demol J Clijmans T Delport H
Full Access

Introduction

Different classification systems for acetabular deficiencies, including AAOS and Paprosky, are commonly used. Classification of these bone defects is often performed based on Xrays or CT images. Although the amount of bone loss is rarely measured quantitatively in these images, objective and quantitative data on the degree of bone loss could facilitate correct and consistent classification. Recently, a computerized CT-based tool was presented to quantitatively asses bone loss: TrABL (Total radial Acetabular Bone Loss). This study demonstrates on an extended patient population that TrABL combined with standard classification systems provides more detailed, quantitative information on bone defects.

Methods

CT scans of 30 severe acetabular defects, classified Paprosky IIIA and IIIB, were collected and analysed with TrABL. The tool automatically calculated the total amount of bone that was missing around the acetabulum, seen from the hip's original rotation centre. Six anatomical regions were defined for which the degree of bone loss was expressed: anterosuperior, anteroinferior, inferior, posteroinferior, posterosuperior and medial.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 40 - 40
1 Jun 2012
Delport H Mulier M Gelaude F Clijmans T
Full Access

The number of joint revision surgeries is rising, and the complexity of the cases is increasing. In 58% of the revision cases, the acetabular component has to be revised. For these indications, literature decision schemes [Paprosky 2005] point at custom pre-shaped implants. Any standard device would prove either unfeasible during surgery or inadequate in the short term. Studies show that custom-made triflanged implants can be a durable solution with good clinical results. However, the number of cases reported is few confirming that the device is not in widespread use.

Case Report

A patient, female 50 yrs old, diagnosed having a pseudotumor after Resurfacing Arthroplasty for osteo-arthritis of the left hip joint. The revision also failed after 1 y and she developed a pelvic discontinuity. X-ray and Ct scans were taken and sent to a specialized implant manufacturer [Mobelife, Leuven, Belgium]. The novel process of patient-specific implant design comprises three highly automated steps.

In the first step, advanced 3D image processing presented the bony structures and implant components. Analysis showed that anterior column was missing, while the posterior column was degraded and fractured. The acetabular defect was diagnosed being Paprosky 3B. The former acetabular component migrated in posterolateral direction resulting in luxation of the joint. The reconstruction proposal showed the missing bone stock and anatomical joint location.

In the second step, a triflanged custom acetabular metal backing implant was proposed. The bone defect (35ml) is filled with a patient-specific porous structure which is rigidly connected to a solid patient-specific plate. The proposed implant shape is determined taking into account surgical window and surrounding soft tissues. Cup orientation is anatomically analyzed for inclination and anteversion. A cemented liner fixation was preferred (Biomet Advantage 48mm). Screw positions and lengths are pre-operatively planned depending on bone quality, and transferred into surgery using jig guiding technology (Materialise NV, Leuven, Belgium).

In the third step, the implant design was evaluated in a fully patient-specific manner in dedicated engineering (FEA) software. Using the novel automated CT-based methodology, patient-specific bone quality and thickness, as well as individualised muscle attachments and muscle and joint forces were included in the evaluation.

Implants and jig were produced with Additive Manufacturing techniques under ISO 13485 certification, using respectively Selective Laser Melting (SLM) techniques [Kruth 2005] in medical grade Ti6Al4V material, and the Selective Laser Sintering technique using medical grade epoxy monomer. The parts were cleaned ultrasonically, and quality control was performed by optical scanning [Atos2 scanning device, GOM Intl. AG, Wilden, Switzerland]. Sterilization is performed in the hospital.

CONCLUSION

A unique combination of advanced 3D planning, patient-specific designed and evaluated implants and drill guides is presented. This paper illustrates, by means of a clinical case, the novel tools and devices that are able to turn reconstruction of complex acetabular deficiencies into a reliable procedure.