Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 20 - 20
4 Apr 2023
Gori M Giannitelli S VadalĂ  G Papalia R Zollo L Rainer A Denaro V
Full Access

Intraneural electrodes can be harnessed to control neural prosthetic devices in human amputees. However, in chronic implants we witness a gradual loss of device functionality and electrode isolation due to a nonspecific inflammatory response to the implanted material, called foreign body reaction (FBR). FBR may eventually lead to a fibrous encapsulation of the electrode surface. Poly(ethylene glycol) (PEG) is one of the most common low-fouling materials used to coat and protect electrode surfaces. Yet, PEG can easily undergo encapsulation and oxidative damage in long-term in vivo applications. Poly(sulfobetaine methacrylate) - poly(SBMA) - zwitterionic hydrogels may represent more promising alternatives to minimize the FBR due to their ultra-low fouling features. Here, we tested and compared the poly(SBMA) zwitterionic hydrogel coating with the PEG coating in reducing adhesion and activation of pro-inflammatory and pro-fibrotic cells to polyimide surfaces, which are early hallmarks of FBR. We aimed to coat polyimide surfaces with a hydrogel thin film and analysed the release of a model drug from the hydrogel.

We performed hydrogel synthesis, mechanical characterization and biocompatibility analysis. Cell adhesion, viability and morphology of human myofibroblasts cultured on PEG- and hydrogel-coated surfaces were evaluated through confocal microscopy-based high-content analysis (HCA). Reduced activation of pro-inflammatory human macrophages cultured on hydrogels was assessed as well as the hydrogel drug release profile.

Because of its high hydration, biocompatibility, low stiffness and ultra-low fouling characteristics the hydrogel enabled lower adhesion and activation of pro-inflammatory and pro-fibrotic cells vs. polystyrene controls, and showed a long-term release of the anti-fibrotic drug Everolimus. Furthermore, a polyimide surface was successfully coated with a hydrogel thin film.

Our soft zwitterionic hydrogel could outperform PEG as more suitable coating material of neural electrodes for mitigating the FBR. Such poly(SBMA)-based biomaterial could also be envisioned as long-term delivery system for a sustained release of anti-inflammatory and anti-fibrotic drugs in vivo.