Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 17 - 17
1 Apr 2017
Ramesh A Levingstone T Brady R Gleeson J Brama P O'Brien F
Full Access

Background

Articular cartilage has poor repair properties and poses a significant challenge in orthopaedics. Damage as a result of disease or injury frequently leads to formation of an osteochondral defect. Conventional repair methods, including allograft, autograft and microfracture, have a number of disadvantages in terms of cost, associated technical challenges and the requirement for multiple operations. A novel tri-layered scaffold developed in our lab, addresses this issue as it closely matches the structure and composition of osteochondral tissue.

Methods

In vivo assessment was carried out in a caprine model by creating 6 mm × 6 mm defects in the medial femoral condyle and lateral trochlear ridge of each joint. Defects were implanted with the tri-layered scaffold and for comparison also with a market-leading scaffold, while some of defects were left empty, acting as a control. Assessment was carried out at 3 month, 6 month and 12 month time points. The quality of the repair at the various time points was graded macroscopically and microscopically by histological staining of the samples and also assessed using micro-CT (computed tomography) analysis.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 17 - 17
1 Jul 2014
Thompson E Matisko A McFadden T Gleeson J Duffy G Kelly D O'Brien F
Full Access

Autogenous bone grafting limitations have motivated the development of Tissue-Engineered (TE) biomaterials that offer an alternative as bone void fillers. However, the lack of a blood supply within implanted constructs may result in avascular necrosis and construct failure1. The aim of this project was to investigate the potential of novel TE constructs to promote vascularisation and bone defect repair using two distinct approaches. In Study 1, we investigated the potential of a mesenchymal stem cell (MSC) and endothelial cell (EC) co-culture to stimulate pre-vascularisation of biomaterials prior to in vivo implantation2. In Study 2, we investigated the potential of TE hypertrophic cartilage to promote the release of angiogenic factors such as VEGF, vascular invasion and subsequent endochondral bone formation in an in vivo model.

Collagen-only (Coll), collagen-glycosaminoglycan (CG) and collagen-hydroxyapatite (CHA) scaffolds were fabricated by freeze-drying3, seeded with cells and implanted into critical-sized calvarial and femoral defects in immunocompetent rats. In Study 1, Coll and CG scaffolds were initially seeded with ECs, allowed to form capillary-like networks before the delayed addition of MSCs and continued culture prior to calvarial implantation. In Study 2, CG and CHA scaffolds were seeded with MSCs and cultured under chondrogenic and subsequent hypertrophic conditions to form a cartilage pre-cursor prior to calvarial and femoral implantation in vivo.

MicroCT and histomorphometry quantification demonstrated the ability of both systems to support increased bone formation compared to controls. Moreover, the greatest levels of bone formation were observed in the CG groups, notably in those containing cartilage tissue (Study 2). Assessment of the immune response suggests the addition of MSCs promotes the polarisation of macrophages away from inflammation (M1) towards a pro-remodelling phenotype (M2).

We have developed distinct collagen-based systems that promote vascularisation and ultimately enhance bone formation, confirming their potential as advanced strategies for bone repair applications.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 162 - 162
1 Sep 2012
Lyons F Gleeson J Partap S Synnott K O'Byrne J O'Brien F
Full Access

Treatment of segmental bone loss remains a major challenge in orthopaedic surgery. This study evaluated the healing potential of a series of highly porous tissue engineering scaffolds with the current clinical gold standard. We compare healing of collagen-glycosaminoglycan (CG) and collagen micro-hydroxyapatite (CHA) scaffolds, with and without recombinant bone morphogenetic protein-2 (BMP2), with autogenous bone graft (ABG) in the healing of a 15mm rabbit radius defect, which were filled with either CG scaffold, CHA scaffold, CG-BMP2, CHA-BMP2 or ABG. Serial radiographs and micro-computed tomography (µCT) at six week radiographs demonstrated complete defect bridging with callus using CHA and CG-BMP2 while the CHA-BMP2 was already in an advanced state of healing with cortical remodeling. By sixteen weeks CHA, CG-BMP2 and ABG all had advanced healing with cortical remodeling while CHA-BMP2 had complete anatomic healing. Quantitative histomorphometry values demonstrated similarly high healing levels of healing in CHA, CG-BMP2 and ABG with highest overall values in the CHA-BMP2 group. Thus, treatment of a critical sized, weight bearing, rabbit radius defect with a CHA scaffold can result in full cortical bridging with medullary cavity development. In addition, a CHA-BMP2 combination can result in fully mature, anatomic healing. The use of an off-the-shelf CHA scaffold for direct surgical placement into a defect site may be an effective bone graft substitute in the treatment of skeletal defects. The ease of manufacture, storage and peri-operative preparation may offer an alternative to traditional strategies, as well as to more recent BMP2 devices. This study provides clear evidence that CHA scaffolds can perform as well as autogenous bone grafts and supports their use as a viable alternative. Where the use of BMP2 may be desirable, these materials provide an ideal delivery mechanism and using a very low (near physiological) dose, healing superior to autogenous graft may be achieved.