Application of an external fixator for type B and C pelvic fractures can be life saving. Anteriorly the fixator half pins can be placed in the long and thick corridor of bone in the supra-acetabular region often referred to as the low anterior ex-fix. Pins in this location are favoured as they are more stable biomechanically. The bone tunnel for the low anterior ex-fix can be visualised with an iliac oblique projection intra-operatively. In some cases despite being outside the articular surface it may still be low enough to pass through the capsular attachment of the hip joint on the anterior inferior iliac spine. We aim to provide radiological markers for the most superior fibres of the capsule to help accurate extra-capsular pin placement within the supra-acetabular bone tunnel. Thirteen cadaveric pelves, embalmed with the method of Thiel, were used for this study. An image intensifier was positioned to acquire an iliac oblique outlet view, such that the supra acetabular bone tunnel was visualised. This was achieved by positioning the beam 30 degrees cephalad and 20 degrees medial. Both left and right hemipelves were examined in this way. A standard size metallic disc was included in all images with in the acetabulum to allow for image calibration. The proximal most fibres of the hip joint capsule were marked with a K-wire so that their relation to the bone tunnel could be clearly seen on the images. Once all images were acquired they were calibrated and analysed using ImageJ Software to estimate the height and maximum width of the bone tunnel as seen on the images and the vertical distance of the superior most fibres of the capsule from the dome of the acetabulum.Introduction
Materials and Methods
Percutaneous stabilisation of tibial fractures by locking plates has become an accepted form of osteosynthesis. A potential disadvantage of this technique is the risk of damage to the neurovascular bundles in the anterior and peroneal compartments. Our aim in this anatomical study was to examine the relationship of the deep peroneal nerve to a percutaneously-inserted Less Invasive Stabilisation System tibial plate in the lower limbs of 18 cadavers. Screws were inserted through stab incisions. The neurovascular bundle was dissected to reveal its relationship to the plate and screws. In all cases, the deep peroneal nerve was in direct contact with the plate between the 11th and the 13th holes. In ten specimens the nerve crossed superficial to the plate, in six it was interposed between the plate and the bone and in the remaining two specimens it coursed at the edge of the plate. Percutaneous insertion of plates with more than ten holes is not recommended because of the risk of injury to the neurovascular structures. When longer plates are required we suggest distal exposure so that the neurovascular bundle may be displayed and protected.