Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 1 - 1
1 Jul 2020
Xiong L Hu Y Ding F Shao Z Wang W Liu G Cai X
Full Access

The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs.

AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by JC-1 staining and DCFH-DA fluorescent probes, respectively.

Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in MMP and the accumulation of intracellular ROS in AF cells. The antioxidant N-acetyl-L-cysteine significantly reversed AGE-induced MMP decrease and AF cell apoptosis.

These results suggest that AGEs induce rabbit AF cell apoptosis and mitochondrial pathways may be involved in AGE-mediated cell apoptosis, which may provide a theoretical basis for diabetic IVD degeneration.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 14 - 14
1 Mar 2012
Kim W Hu Y Duan K Wang R Garbuz D Masri B Duncan C
Full Access

Introduction

Achieving durable implant–host bone fixation is the major challenge in uncemented revision hip arthroplasty when significant bone stock deficiencies are encountered. The purpose of this study was to develop an experimental model which would simulate the clinical revision hip scenario and to determine the effects of alendronate coating on porous tantalum on gap filling and bone ingrowth in the experimental model.

Methods

Thirty-six porous tantalum plugs were implanted into the distal femur, bilaterally of 18 rabbits for four weeks. There were 3 groups of plugs inserted; control groups of porous tantalum plugs (Ta) with no coating, a 2nd control group of porous tantalum plugs with micro-porous calcium phosphate coating, (Ta-CaP) and porous tantalum plugs coated with alendronate (Ta-CaP-ALN). Subcutaneous fluorochrome labelling was used to track new bone formation. Bone formation was analysed by backscattered electron microscopy and fluorescence microscopy on undecalcified histological sections.