Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 37 - 37
1 Jun 2012
Tang N Hung V Yeung H Liao C Lam T Lee K Ng B Cheng J
Full Access

Introduction

Genetic predisposition is a key causal factor in adolescent idiopathic scoliosis (AIS), which is the most common form of spinal deformity. However, common quantitative genetic effect estimates such as hereditability have not been fully evaluated and reported for this disorder. We aimed to determine the sibling recurrent risk and hereditability of AIS in first-degree relatives of 513 Chinese patients with this disorder.

Methods

Family members of 513 Chinese patients with AIS attending a scoliosis clinic were assessed. A diagnosis of AIS was made with the criteria of Cobb angle greater than 20°. The evaluation included clinical assessment and physical examination in a health screening centre by medical doctors with use of forward bending test. Any positive screening cases were referred to a scoliosis clinic for follow-up spinal radiograph. All radiographs were assessed by an orthopaedic surgeon in the scoliosis clinic. A population prevalence of scoliosis was obtained from the data of a territory-wide screening campaign. The prevalence of AIS among siblings of probands was measured both overall and divided by sex of siblings. The sibling recurrent risk (λs) was calculated for male and female siblings separately with reported population incidence of AIS.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 53 - 53
1 Jun 2012
Lam T Hung V Yeung H Yu F Chan C Ng B Lee K Qin L Cheng J
Full Access

Introduction

Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density, which could be related to its etiopathogenesis. Apart from bone density, bone micro-architectures are equally important for better understanding of disease initiation and progression in AIS. Quantitative assessment of bone quality is hampered by the invasive nature of investigations, until recently when the high-resolution pQCT (XtremeCT) became available for revolutionary in-vivo microimaging and derivation of bone micro-architectural parameters. Our objective was to use this powerful instrument to study bone qualities in AIS and compare findings with those from healthy controls.

Methods

48 girls with AIS and 84 sex-matched healthy controls were recruited. Cobb angle was measured with standing radiographs, and imaging of the non-dominant distal radius was captured with XtremeCT according to a standard protocol.