Standard evaluation and diagnosis of pincer-type femoroacetabular impingment (FAI) relies on anteroposterior (AP) radiographs, clinical evaluation, and/or magnetic resonance imaging (MRI). However, the current evaluation techniques do not offer a method for accurately defining the amount of acetabular rim overcoverage in pincer-type FAI. Several studies have remarked on the particular problems with radiographic evaluation, including beam divergence, difficulty with defining the acetabular rim, and pelvic tilt. Some studies have proposed methods to mitigate these issues; however, radiographic analysis still relies on projected and distorted images, making it difficult to acquire an accurate quantitative estimate of the amount of crossover. We propose a technique that utilises computed tomography (CT) data to accurately quantify the amount of acetabular crossover while accounting for known diagnostic problems, specifically pelvic tilt. This work describes a novel method that utilises CT data of a patient's afflicted hip joint region to assess the amount of acetabular overcoverage due to pincer deformity. The amount of overcoverage was assessed using a spline curve defined through the segmentation of the acetabular rim from CT data. To mitigate pelvic tilt, the user selected points to define both the pubic symphysis and the promontory in a lateral digitally reconstructed radiograph. The algorithm corrected the pelvic tilt by adjusting to a defined neutral position (in our case, a 60°), and the user adjusted for slight rotation differences ensuring there was a vertical line connecting the symphysis and the sacrococcygeal joint. After successfully repositioning the pelvis, the algorithm computed the amount of acetabular overcoverage. The algorithm identified the superolateral point of the acetabulum and the most inferior points of the anterior and posterior rim. A line, the mid-acetabular axis, was constructed between the superolateral point and the midpoint of the most inferior points on the anterior and posterior rims; the mid-acetabular axis was extended anterior and posterior to create a plane. Crossover occurred when the anterior rim of the acetabulum intersected this plane. If an intersection occurred, the algorithm measured the length of the mid-acetabular axis, and the length and width of the section representing overcoverage. These points were then projected onto anteroposterior DRRs and again measured to generate a basis of comparison. We tested our method on four cadaveric specimens to analyze the relationship between radiographic assessment and our technique. We simulated varying degrees of impingement in the cadavers by increasing the amount of pelvic tilt and defining that as the neutral position for a given trial. Moreover, we assessed interobserver variability in repositioning the pelvis as to the effect this would have on the final measurement of crossover length and width. The software achieved consistent, quantitative measurements of the amount of acetabular overcoverage due to pincer deformity. When compared with conventional radiographic measurements for crossover, there was a significant different between the two modalities. Specifically, both the ratios of crossover length to acetabular length and crossover width to crossover length were less using the CT-based approach (p < 0.001). Moreover, there were no significant differences between observers using our approach. The proposed technique can form the basis for a new way to diagnosis and measure acetabular overcoverage resulting in pincer impingement. This computational method can help clinicians to accurately correct for tilt and rotation, and subsequently provide consistent, quantitative measurement of acetabular overcoverage.
Imaging techniques continue to gain in sophistication. Gd-enhanced MRI can be used to assess perfusion of the diseased tissue. Doppler ultrasonography has also been used to estimate blood flow noninvasively. Near Infrared Spectroscopy (NIRS) can be used to measure tissue oxygenation. While there has been recent interest in using biomarkers or genetic markers in the diagnosis and analysis of disease progression, more research is needed to determine the sensitivity and specificity of these techniques with respect to osteonecrosis.
We performed a retrospective analysis of the clinical and radiological outcomes of total hip replacement using an uncemented femoral component proximally coated with hydroxyapatite. Of 136 patients, 118 who had undergone 124 primary total hip replacements were available for study. Their mean age was 66.5 years (19 to 90) and the mean follow-up was 5.6 years (4.25 to 7.25). At the final follow-up the mean Harris hip score was 92 (47.7 to 100). Periprosthetic femoral fractures, which occurred in seven patients (5.6%), were treated by osteosynthesis in six and conservatively in one. We had to revise five femoral components, one because of aseptic loosening, one because of septic loosening and three because of periprosthetic fracture. At the final follow-up there were definite signs of aseptic loosening in two patients. Radiologically, proximal femoral bone loss in Gruen zones I and VI was evident in 96.8% of hips, while bone hypertrophy in zones III and V was seen in 64.7%. In 24 hips (20.2%) the mean subsidence of the stem was 3.7 mm which occurred within the first 12 postoperative weeks. This indicated poor initial stability, which might have been aggravated by early weight-bearing. The high rate of failure in our study suggests that proximal femoral bone loss affects the long-term survival of the replacement.