Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 83 - 83
1 Dec 2013
Ihesiulor O
Full Access

Mechanical wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the trunnion-taper surface. In order to quantify the amount of volume loss to ultimate locations in the surrounding joint space, finite element analysis of the modular head-stem junction is being carried out. The key purpose being to determine a set of optimum design changes that offer the least material loss at the taper-trunnion junction using optimization algorithms such as the gradient based local search (Sequential Quadratic Programming–SQP) and global search (Non-Dominated Sorting Genetic Algorithm-II–NSGA-II). In a broader sense, the principal goal is to work toward the minimization of wear debris produced in the hip joint, thereby resulting in a longer prosthetic lifetime.

A numerical approach that simulates wear in modular hip prostheses with due consideration to the taper-trunnion junction on metal-on-metal contacts is proposed. A quasi-static analysis is performed considering realistic loading stages in the gait cycle, and nonlinear contact analysis is to be employed. The technique incorporates a measured wear rate as an input to the finite element model. The simulation of wear is performed by progressively changing nodal coordinates to simulate the wear loss that occurs during surface interaction. The geometry of the worn surface is updated under gait loading. With a given geometry and gait loading, the linear and volumetric wear increases with the number of gait cycles. The continuous wear propagation is discretized and an approximation scheme known as surrogates is to be developed using Artificial Neural Networks (ANN) to reduce the expensive computational simulations during optimization.

The model is employed in the optimization schemes coded in MATLAB and linked to the finite element model developed in ANSYS batch mode. The objective function of the optimization problem is to minimize the volumetric wear at taper-trunnion interface under some constraints. By minimizing the volumetric wear, the chance of failure of modular hip implants is also minimized. The FE model developed to reproduce fretting wear is validated through in vitro wear simulations.

The important taper design variables considered to have impact on the fretting corrosion performance include; medial-lateral offset, neck length, taper head diameter, trunnion length and diameter, included angle for the head/neck tapers, angle of mismatch or variation in taper trunnion angle, etc. It is expected from clinical outcomes that increased offset and large taper diameter has serious implications in the fretting corrosion behavior primarily because these variables control the bending stresses and strains along the length of the taper. During cyclic loading of the taper, the higher the strain range, the higher will be the relative micromotion at the point of engagement between the stem and head tapers. This research is carried out with the objective to optimize the effects of these geometrical factors at the mating taper interfaces.

The developed models have great potentiality for accurate assessment of wear in a range of metal-on-metal (MoM) hip prostheses at the femoral head taper-trunnion junction while substantially reducing the wear and failure rate of prostheses.