This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes. A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle.Aims
Methods
It has been reported that the rate of complications around the patella after Total Knee Arthroplasty(TKA) is 1–12%, and the patella dislocation is the most common one. We will report a case that had the patella dislocation after TKA caused by malrotation of the components.INTRODUCTION
PURPOSE
The purpose of this study is to evaluate stiff knees which have a preoperative arc of motion (AOM) < 65 degrees and maximum flexion < 90 degrees under anesthesia for primary TKA. We prospectively evaluated 25 knees, 20 patients, the follow up period was 5±3 years, OA 13, RA 10 and traumatic OA 2 knees. All case were medial para-patella approaches and snip was added in one knee operation, 23 PS-type and 2 constrain-type TKAs.Purpose
Material and Methods
Appropriate soft tissue balance is an important factor for postoperative function and long survival of total knee arthroplasty(TKA). Soft tissue balance is affected by ligament release, osteophyte removal, order of soft tissue release, cutting angle of tibial surface and rotational alignment of femoral components. The purpose of this study is to know the characteristics of soft tissue balance in ACL deficient osteoarthritis(OA) knee and warning points during procedures for TKA. We evaluated 139 knees, underwent TKA (NexGen LPS-Flex, fixed surface, Zimmer) by one surgeon (S.A.) for OA. All procedures were performed through a medial parapatellar approach. There were 49 ACL deficient knees. A balanced gap technique was used in 26 ACL deficient knees, and anatomical measured technique based on pre-operative CT was used in 23 ACL deficient knees. To compare flexion-extension gaps and medial- lateral balance during operations between the two techniques, we measured each using an original two paddles tensor (figure 1) at 20lb, 30lb and 40lb, for each knee at a 0 degree extension and 90 degree flexion. We measured bone gaps after removal of all osteophytes and cutting of the tibial surface, then we measured component gaps after insertion of femoral components. Statistical analysis was performed by t-test with significant difference defined as P<0.05.INTRODUCION
METHODS
Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.Objectives
Methods
The results of modified gap balancing and measured resection technique have been still controversial. We compared PS-type TKAs for osteoarthritis performed using the modified gap technique and the measured resection to determine if either technique provides superior clinical results. The modified gap technique was used in 85 knees, and the measured technique using preoperative CT was used in 70 knees. To compare intra-operative soft tissue balance, bone gap and component gap were measured using original two paddle tensor (20,30,40lb) at 0 degree extension and 90 degrees flexion. To assess the post-operative patella congruency and soft tissue balance, we measured patella tilt, condylar twist angle (CTA) and condylar lift-off angle (LOA) in radiographs. Finally, we evaluated postoperative clinical result (1–5 years) KOOS. Statistical analysis was used by StatView.INTRODUCTION
METHODS
All animal experiments were performed on IACUC approved protocols. USA300LAC (MRSA) and RP62A(INTRODUCTION
METHODS
Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.Objectives
Materials and Methods
The systematic effects of joint replacement in rheumatoid arthritis (RA) patients are that inflamed synovium and pathological articular cartilage has dissipated. Expectations of total knee arthroplasty (TKA) are reduction of inflammatory cytokines, decreased disease activity and improvement of drug efficacy and ADL. Remission of rheumatoid arthritis is defined as having a Disease Activity Score DAS28 (ESR) of less than 2.6 and Health Assessment Questionnaire (HAQ) – Disability Index, less than 0.5. We investigated whether TKA could reduce disease activity and improve ADL, and subsequent remission levels of DAS and HAQ or not.Introduction
Purpose
Total elbow arthroplasty (TEA) has become an established procedure in the treatment of patients with rheumatoid arthritis (RA). However, there is little information on whether limited extension of the elbow affects clinical outcome scores after TEA and what causes the limited extension. We retrospectively analyzed fifty-four cases of primary TEA in patients with RA. There were seven men and thirty-nine women with a mean age of 63.6 years (range, thirty to eighty years). Thirty-seven of Coonrad-Morrey and seventeen of Discovery prostheses were used. The mean length of follow-up was 7.1 ± 4.0 years (range 2.0–14.6 years). Mayo Elbow Performing Score (MEPS) and radiological measurements were recorded. Anteroposterior and lateral radiographs were assessed before and after the operation and at the latest follow-up. Widening of the joint space was calculated by subtracting the length measured on the postoperative radiograph from that on the preoperative radiograph.Background
Methods
Malrotation of a femoral component is a cause of patellofemoral maltracking after total knee arthroplasty (TKA). We have developed a balanced gap technique in posterior stabilized total knee arthroplasty (PS-TKA) using an original tensor instrument. One of characteristics of this instrument is the ability to measure gaps even if there is a bone defect, because it has two paddles, and we can attach block augmentations. In addition it can measure the gap after a reduction of the patella with an offset mechanism. In the balanced gap technique, the femoral component rotation is decided by a tibial cut surface and ligaments balance using the tensor device. This study investigated retrospectively whether rotational alignment of femoral component rotation influenced patellofemoral joint congruency in PS- TKA. We evaluated the radiographs of 52 knees of 42 patients, who underwent TKA (NexGen LPS-Flex, fixed surface, Zimmer) by one surgeon (S.A.) for osteoarthritis or rheumatoid arthritis. All procedures were performed through a medial parapatellar approach and a balanced gap technique using a developed versatile tensor device. We measured lateral patella tilt and lateral patella shift at post-op. 6 months. To assess the rotational alignment of femoral component rotation, condylar twist angle (CTA) was measured, and to assess the postoperative flexion gap balance, a condylar lift-off angle (LOA) was measured using the epicondylar view radiographs.Introduction
Material and Methods
Malrotation of the tibial component would lead to various complications after total knee arthroplasty (TKA) such as improper joint kinematics, patellofemoral instability, or excessive wear of polyethylene. However, despite reports of internal rotation of the tibial component being associated with more severe pain or stiffness than external rotation, the biomechanical reasons remain largely unknown. In this study, we used a musculoskeletal computer model to simulate a squat (0°–130°–0° flexion) and analyzed the effects of malrotated tibial component on lateral and medial collateral ligament (LCL and MCL) tensions, tibiofemoral and patellofemoral contact stresses, during the weight-bearing deep knee flexion. A musculoskeletal model, replicating the dynamic quadriceps-driven weight-bearing knee flexion in previous cadaver studies, was simulated with a posterior cruciate-retaining TKA. The model included tibiofemoral and patellofemoral contact, passive soft tissue and active muscle elements. The soft tissues were modeled as nonlinear springs using previously reported stiffness parameters, and the bony attachments were also scaled to some cadaver reports. The neutral rotational alignment of the femoral and tibial components was aligned according to the femoral epicondylar axis and the tibial anteroposterior axis, respectively. Knee kinematics and ligament tensions were computed during a squat for malrotated conditions of the tibial component. The tibial rotational alignments were changed from 15° external rotation to 15° internal rotation in 5° increments. The MCL and LCL tensions, the tibiofemoral and patellofemoral contact stresses were compared among the knees with different rotational alignment.Introduction
Materials and Methods
Total knee arthroplasty (TKA) is one of the most successful surgeries with respect to relieving pain and restoring function of the knee. However, some studies have reported that patients are not always satisfied with their results after TKA. The aim of this study was to determine which factors contribute to patient's satisfaction after TKA. We evaluated 69 patients who had undergone 76 primary TKAs between March 2012 and June 2013, and assessed patient- and physician- reported scores using the 2011 Knee Society Scoring System and clinical variables before and after TKAs. We determined the correlation between patient satisfaction and clinical variables.Purpose
Methods
In articular cartilage defects, chemokines are upregulated and potentially induce the migration of bone marrow cells to accelerate the healing processes. The treatment of damaged articular cartilages is one of the most challenging issues in sports medicine and in aging societies. In the microfracture technique for the treatment of articular cartilage defects, bone marrow cells are assumed to migrate from the bone marrow. Bone marrow cells are well-known for playing crucial roles in the healing processes, but how they can migrate from underlying bone marrow remains to be investigated. We have previously shown that SDF-1, one of chemokines, play crucial roles in the recruitment of mesenchymal stem cells in bone healing processes, and the induction of SDF-1 can induce a successful bone repair. If the migration can be stimulated by any means in the cartilage defects, a better result can be expected. The aim of this study was to elucidate the mechanisms of the migration of bone marrow cells and which factors contribute to the processes.Summary Statement
Introduction
MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated. PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. Summary Statement
Results
Modular femoral stems of Total Hip Arthroplasty (THA) have been designed to fit the metaphysis and diaphysis separately. Clinical results with modular femoral stems are reported to be satisfactory, but there exists several concerns with modular implant connections, including fretting corrosion, fracture of implant, and dissociation the stem from the proximal sleeve. Recently, we have become aware of another potential consequence of the modular design: sleeve deformation secondary to forces encountered during insertion. In our patients, we noted that the stems would not fully seat in the machined taper of the sleeve, indicating that some type deformation to the sleeve had occurred. We began an in vivo study to characterize this phenomenon. The objectives of this study were (1) Does deformation occur by impacting the sleeve into the metaphysis? (2) If so, quantify the sleeve deformation in hip arthroplasty patients. One man and 7 women undergoing primary THA were enrolled. This project was approved by IRB. This modular system (4-U CLS; Nakashima Medical Co., Japan) consists of a metaphyseal sleeve that connects with the diaphyseal stem via a Morse taper. The sleeve was impacted into the metaphysis first, followed by the stem. A custom taper gauge for each size of sleeve (Figure 1A) was inserted into the sleeve before and after impacting the sleeve into the metaphysis, and the distance between the top of the sleeve and the top of the gauge was measured using a caliper (* in Figure 1B). Deformation was defined as the difference in distance between the before and the after impacted dimensions. Preoperative femoral morphology, assessed using Dorr classification system, was type A in 2 hips, type B in 5 hips, and type C in 1 hip.INTRODUCTION:
MATERIALS AND METHODS:
The assumption that symmetric extension-flexion gaps improve the femoral condyle lift-off phenomenon and the patellofemoral joint congruity in total knee arthroplasty (TKA) is now widely accepted. For tease reasons, the balanced gap technique has been developed. However, the management of soft tissue balancing during surgery remains difficult and much is left to the surgeon's feel and experience. Furthermore, little is known about the differences of the soft-tissue stiffness (STS) of medial and lateral compartment in extension and flexion in the both cruciate ligaments sacrificed knee. It has a deep connection with the achievement of appropriate gaps operated according to the balanced gap technique. Therefore, the purpose of this study was to analyze the STS of individual compartment in vivo. The subjects presented 100 osteoarthritic knees with varus deformity underwent primary posterior stabilized (PS) – TKA (NexGen LPS-flex, Zimmer, Warsaw, USA). All subjects completed written informed consent. The patient population was composed of 14 men and 68 women with a mean age of 74.5 ± 7.5 years. The average height, weight, BMI, weight-bearing femorotibial mechanical angle (FTMA), the patella height (T/P ratio), extension and flexion angle of the knee under anesthesia were 151.9 ± 7.8 cm, 62.1 ± 9.4 kg, 26.9 ± 3.7 kg/m2, 167.7 ± 5.6 °, 0.91 ± 0.15 °, −12.0 ± 6.7° and 129.4 ± 13.8°, respectively. After finishing osteotomy and soft tissue balancing, the femoral trial prosthesis was fitted with patello-femoral joint reduction. Then, the medial and lateral compartment gaps (CG) were measured at various distraction forces (89–178 N) using a newly developed versatile tensor device at full extension and 90° flexion positioning, respectively. (Fig. 1) The STS (N/mm) was calculated from a load displacement curve generated by the intra-operative CG data and joint distraction force. Comparisons were made by Wilcoxon signed-ranks test. Correlations were analyzed with Pearson's correlation coefficient. Predictive variables were analyzed with Stepwise regression. A value of p < 0.05 was considered significant.Introduction:
Materials and Methods:
Conventional understanding of knee kinematics suggests that the femoral component should be rotationally aligned parallel to the surgical epicondylar axis (SEA). In contrast, the balanced gap technique suggests the knee be balanced in extension and flexion to achieve proper kinematics and stability of the knee without reference to fixed bony landmarks. To investigate the functional flexion-extension axis (FFEA) when a balanced gap technique was used in the posterior-stabilized total knee arthroplasty (PS-TKA), the relationships between rotational alignment of the femoral component to the postoperative flexion gap balance and to the tibial mechanical axis were evaluated radiographically. In this prospective study, 63 consecutive knees in 50 patients were included with medial osteoarthritis undergoing a primary PS-TKA (NexGen LPS-Flex, fixed surface, Zimmer; Warsaw, USA). All subjects completed written informed consent. The patient population was composed of 8 men and 42 women with a mean age of 73.0 ± 7.7 years. The average height, weight, BMI, weight-bearing femorotibial mechanical angle (FTMA), condylar twist angle (CTA), and the patella height (T/P ratio) were 150.9 ± 7.2 cm, 62.3 ± 10.1 kg, 27.3 ± 4.0 kg/m2, 167.8 ± 5.5°, 5.9 ± 1.6° and 0.94 ± 0.15, respectively. All procedures were performed through a medial parapatellar approach and a balanced gap technique used a newly developed versatile tensor device. Pre- and post-operatively, the CTA was evaluated using computed tomography (CT). To assess the postoperative flexion gap balance, a condylar lift-off angle (LOA) was evaluated using the epicondylar view radiographs. The FTMA and coronal alignment of the tibial component in reference to the tibial mechanical axis (angle β) were evaluated using plain AP radiography. The FFEA (angle θ) of the knee was calculated as the following; (angle β) + (post-operative CTA) – (LOA). Correlations were analyzed with Pearson's correlation coefficient. Predictive variables were analyzed utilizing Stepwise regression. A value of p < 0.05 was considered significant.Introduction:
Materials and Methods:
Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. We have developed a balanced gap technique in posterior stabilized total knee arthroplasty using an original instrument. Patellar instability is associated with an increased the tibial tubercle and the center of the groove (TT-TG) distance > 20 mm, and TT-TG is regarded as one index of a factor influencing congruity. To assess the influence on a patellofemoral joint by a modified gap technique, the purpose of this study is to compare the TT-TG distance before surgery and after total knee arthroplasty. We explored the 30 knees, 25 patients (4 male and 21 female), who underwent total knee arthroplasties (NexGen LPS-Flex, fixed surface, Zimmer; Warsaw, USA) for osteoarthritis or rheumatoid arthritis. All procedures were performed through a medial parapatellar approach and a balanced gap technique used a developed versatile tensor device. We compared the preoperative and postoperative CT at a knee flexion angle of 30 degrees. To assess the force vector of the extensor mechanism, TT-TG distance and the proximal-distal distance between the entrance of the tracheal groove and the tibial tubercle (ET-TT distance) were measured in CT. The relation of both distances (TT-TG index) that divided TT-TG in ET-TT was calculated, because the TT-TG distance was affected by the individual knee size. Three dimensional Q-angle (θ) was also calculated using TT-TG distance and ET-TT distance, sinθ = TT-TG distance/ET-TT distance. (Figure 1)Introduction
Material and Methods
It is said that the mechanical stress is a main factor to advance degenerative osteoarthritis. Therefore, to keep the joint stability is very important to minimize mechanical stress. Methods to evaluate bone-related factor are almost established, especially in hip dysplasia. On the other hand, it is unclear how much each soft tissue contribute to the joint stability. In this study we evaluated the soft tissue contribution for hip joint stability by distraction testing using MTS machine. We used seven fresh frozen hips from four donors, whose race was all western and reason of death was not related to hip disease in all cases. Average age of them at death was 83 years old. Mean average weight and height were each 52 kg and 162 cm. We retrieved hemi pelvis and proximal femur which kept hip joint intact. We removed all other soft tissue except iliofemoral ligament, pubofemoral ligament, ischiofemoral ligament and capsule. The hemi-pelvis mounted on angular-changeable fixator and the femur fixed to MTS machine (Figure 1). XY sliding table was used to minimize the horizontal direction stress during distraction. MTS machine was set to pull the femur parallel to its shaft by 0.4 mm/sec velocity against pelvis after 10N compression and to keep 5 mm distance for 5 seconds. We measured the force at 1 mm, 3 mm, 5 mm distraction. In case the joint was dislocated, the maximum force just before dislocation was recorded. The specimen was changed its posture as neutral (flexion0° abduction0° external rotation0°), flexion (flexion60° abduction0° external rotation0°), abduction (flexion0° abduction30° external rotation0°) and extension (extension20° abduction0° external rotation0°). Each position was measured in six sequential conditions, which are normal, Incised iliofemoral ligament, Circumferentially incised capsule, resected capsule, labral radial tear and resected labrum. After measurement joint surface was observed to evaluate the joint condition.[Introduction]
[Materials & Methods]