Knee pain is common, representing a significant socioeconomic burden. Caused by a variety of pathologies, its evaluation in primary-care is challenging. Subsequently, an over-reliance on magnetic resonance imaging (MRI) exists. Prior to orthopaedic surgeon referral, many patients receive no, or incorrect, imaging. Electronic-triage (e-triage) tools represent an innovative solution to address this problem. The primary aim of this study was to ascertain whether an e-triage tool is capable of outperforming existing clinical pathways to determine the correct pre-hospital imaging based on knee pain diagnosis. Patients ≥18 years with a new presentation of knee pain were retrospectively identified. The timing and appropriateness of imaging was assessed. A symptom-based e-triage tool was developed, using the Amazon LEXbotplatform, and piloted to predict five common knee pathologies and suggest appropriate imaging. 1462 patients were identified. 17% of arthroplasty patients received an ‘unnecessary MRI’, whilst 28% of arthroscopy patients did not have a ‘necessary MRI’, thus requiring a follow-up appointment, with a mean delay of three months (SD 2.6, range 0.2-20.2). Using NHS tariffs, a wasted cost through unnecessary/necessary MRIs and subsequent follow-up appointments was estimated at £45,816. The e-triage pilot was trialled with 41 patients (mean age:58.4 years, 58.5% female). Preliminary diagnoses were available for 34 patients. Using the highest proportion of reported symptoms in the corresponding group, the e-triage tool correctly identified three of the four knee pathologies. The e-triage tool did not correctly identify anterior cruciate ligament injuries (n=3). 79.2% of participants would use the tool again. A significant number of knee pathology patients received incorrect imaging prior to their initial hospital appointment, incurring delays and unnecessary costs. A symptom-based e-triage tool was developed, with promising pilot data and user feedback. With refinement, this tool has the potential to improve wait-times and referral quality, whilst reducing costs.
Clear operative oncological margins are the main target in malignant bone tumour resections. Novel techniques like patient specific instruments (PSIs) are becoming more popular in orthopaedic oncology surgeries and arthroplasty in general with studies suggesting improved accuracy and reduced operating time using PSIs compared to conventional techniques and computer assisted surgery. Improved accuracy would allow preservation of more natural bone of patients with smaller tumour margin. Novel low-cost technology improving accuracy of surgical cuts, would facilitate highly delicate surgeries such as Joint Preserving Surgery (JPS) that improves quality of life for patients by preserving the tibial plateau and muscle attachments around the knee whilst removing bone tumours with adequate tumour margins. There are no universal guidelines on PSI designs and there are no studies showing how specific design of PSIs would affect accuracy of the surgical cuts. We hypothesised if an increased depth of the cutting slot guide for sawblades on the PSI would improve accuracy of cuts. A pilot drybone experiment was set up, testing 3 different designs of a PSI with changing cutting slot depth, simulating removal of a tumour on the proximal tibia (figure 1) A handheld 3D scanner (Artec Spider, Luxembourg) was used to scan tibia drybones and Computer Aided Design (CAD) software was used to simulate osteosarcoma position and plan intentioned cuts (figure 1). PSI were designed accordingly to allow sufficient tumour. The only change for the 3 designs is the cutting slot depth (10mm, 15mm & 20mm). 7 orthopaedic surgeons were recruited to participate and perform JPS on the drybones using each design 2 times. Each fragment was then scanned with the 3D scanner and were then matched onto the reference tibia with customized software to calculate how each cut (inferior-superior-vertical) deviated from plan in millimetres and degrees (figure 3). In order to tackle PSI placement error, a dedicated 3D-printed mould was used.Introduction
Methods
Dislocation is a common complication after proximal and total femur prosthesis reconstruction for primary bone sarcoma patients. Expandable prosthesis in children puts an additional challenge due to the lengthening process. Hip stability is impaired due to multiple factors: Resection of the hip stabilizers as part of the sarcoma resection: forces acts on the hip during the lengthening; and mismatch of native growing acetabulum to the metal femoral head. Surgical solutions described in literature are various with reported low rates of success. Assess a novel 3D surgical planning technology by use of 3D models (computerized and physical), 3D planning, and Patient Specific Instruments (PSI) in supporting correction of young children suffering from hip instability after expandable prosthesis reconstruction following proximal femur resection. This innovative technology creates a new dimension of visualization and customization, and could improve understanding of this complex problem and facilitate the surgical decision making and procedure.Background
Objective
The aim of this project is to test the parameters of Patient Specific Instruments (PSIs) and measuring accuracy of surgical cuts using sawblades with different depths of PSI cutting guide slot. Clear operative oncological margins are the main target in malignant bone tumour resections. Novel techniques like patient specific instruments (PSIs) are becoming more popular in orthopaedic oncology surgeries and arthroplasty in general with studies suggesting improved accuracy and reduced operating time using PSIs compared to conventional techniques and computer assisted surgery. Improved accuracy would allow preservation of more natural bone of patients with smaller tumour margin. Novel low-cost technology improving accuracy of surgical cuts, would facilitate highly delicate surgeries such as Joint Preserving Surgery (JPS) that improves quality of life for patients by preserving the tibial plateau and muscle attachments around the knee whilst removing bone tumours with adequate tumour margins. There are no universal guidelines on PSI designs and there are no studies showing how specific design of PSIs would affect accuracy of the surgical cuts. We hypothesised if an increased depth of the cutting slot guide for sawblades on the PSI would improve accuracy of cuts. A pilot drybone experiment was set up, testing 3 different designs of a PSI with changing cutting slot depth, simulating removal of a tumour on the proximal tibia. A handheld 3D scanner (Artec Spider, Luxembourg) was used to scan tibia drybones and Computer Aided Design (CAD) software was used to simulate osteosarcoma position and plan intentioned cuts. PSI were designed accordingly to allow sufficient tumour. The only change for the 3 designs is the cutting slot depth (10mm, 15mm & 20mm). 7 orthopaedic surgeons were recruited to participate and perform JPS on the drybones using each design 2 times. Each fragment was then scanned with the 3D scanner and were then matched onto the reference tibia with customized software to calculate how each cut (inferior-superior-vertical) deviated from plan in millimetres and degrees. In order to tackle PSI placement error, a dedicated 3D-printed mould was used. Comparing actual cuts to planned cuts, changing the height of the cutting slot guide on the designed PSI did not deviate accuracy enough to interfere with a tumour resection margin set to maximum 10mm. We have obtained very accurate cuts with the mean deviations(error) for the 3 different designs were: [10mm slot: 0.76 ± 0.52mm, 2.37 ± 1.26°], [15 mm slot: 0.43 ± 0.40 mm, 1.89 ± 1.04°] and [20 mm: 0.74 ± 0.65 mm, 2.40 ± 1.78°] respectively, with no significant difference between mean error for each design overall, but the inferior cuts deviation in mm did show to be more precise with 15 mm cutting slot (p<0.05). Simulating a cut to resect an osteosarcoma, none of the proposed designs introduced error that would interfere with the tumour margin set. Though 15mm showed increased precision on only one parameter, we concluded that 10mm cutting slot would be sufficient for the accuracy needed for this specific surgical intervention. Future work would include comparing PSI slot depth with position of knee implants after arthroplasty, and how optimisation of other design parameters of PSIs can continue to improve accuracy of orthopaedic surgery and allow increase of bone and joint preservation.
The treatment of patients with osteoarthritis of the knee and associated extra-articular deformity of the leg is challenging. Current teaching recognises two possible approaches: (1) a total knee replacement (TKR) with intra-articular bone resections to correct the malalignment or (2) an extra-articular osteotomy to correct the malalignment together with a TKR (either simultaneously or staged). However, a number of these patients only have unicompartmental knee osteoarthritis and, in the absence of an extra-articular deformity would be ideal candidates for joint preserving surgery such as unicompartmental knee replacement (UKR) given its superior functional outcome and lower cost relative to a TKR [1). We report four cases of medial unicondylar knee replacement, with a simultaneous extra-articular osteotomy to correct deformity, using novel 3D printed patient-specific guides (Embody, UK) (see Figure 1). The procedure was successful in all four patients, and there were no complications. A mean increase in the Oxford knee score of 9.5, and in the EQ5D VAS of 15 was observed. To our knowledge this is the first report of combined osteotomy and unicompartmental knee replacement for the treatment of extra-articular deformity and knee osteoarthritis. This technically challenging procedure is made possible by a novel 3D printed patient-specific guide which controls osteotomy position, degree of deformity correction (multi-plane if required), and orientates the saw-cuts for the unicompartmental prosthesis according to the corrected leg alignment. Using 3D printed surgical guides to perform operations not previously possible represents a paradigm shift in knee surgery. We suggest that this joint preserving approach should be considered the preferred treatment option for suitable patients.
Opening wedge high tibial osteotomy is an attractive surgical option for physically active patients with early osteoarthritis and varus malalignment. Unfortunately use of this surgical technique is frequently accompanied by an unintended increase in the posterior tibial slope, resulting in anterior tibial translation, and consequent altered knee kinematics and cartilage loading(1). To address this unintended consequence, it has been recommended that the relative opening of the anteromedial and posterolateral corners of the osteotomy are calculated pre-operatively using trigonometry (1). This calculation assumes that the saw-cut is made parallel to the native posterior slope; yet given the current reliance on 2D images and the ‘surgeon's eye’ to guide the saw-cut, this assumption is questionable. The aim of this study was to explore how accurately the native posterior tibial slope is reproduced with a traditional freehand osteotomy saw-cut, and whether novel 3D printed patient-specific guides improve this accuracy. 26 fourth year medical students with no prior experience of performing an osteotomy were asked to perform two osteotomy saw-cuts in foam cortical shell tibiae; one freehand, and one with a 3D printed surgical guide (Embody, London) that was designed using a CT scan of the bone model. The students were instructed to aim for parallelity with a hinge pin which had been inserted (with the use of a highly conforming 3D printed guide) parallel to the posterior slope of the native joint. For the purpose of analysis, the sawbones were consistently orientated along their mechanical and anatomical tibial axes using custom moulded supports. Digital photographs taken in the plane of the osteotomy were analysed with ImageJ software to calculate the angular difference in the sagittal plane between the hinge-pin and saw-cut. Statistical analysis was performed with SPSS v21 (Chicago, Illinois); a paired t-test was used to compare the freehand and patient-specific guide techniques. Statistical significance was set at a p-value <0.05.Introduction
Methods