Modular tantalum augments have been introduced to manage severe bone defects in hip and knee revision surgery. The porous surfaces of tantalum augments are intended to enhance osseointegration and a number of studies have documented their excellent biocompatibility. However, the characteristics of tantalum augment osseointegration on human ex vivo specimens from re-revision procedures have not been reported so far. Out of a total number of 324 hip and knee revisions with a tantalum augment performed in our institution between 2007 and 2010 four patients had to be re-revised at a mean followup time of 15 months. The causes for re-revision were a periprosthetic acetabular fracture in one, a loosening of a tibial component in one and periprosthetic hip infections in two cases. To characterize osseointegration of the tantalum augments, they were removed during revision surgery and subjected to undecalcified processing. All specimens were analysed by contact radiography, histology (toluidine blue, von Kossa) and quantitative histomorphometry.Introduction
Methods
Patellar tracking in total knee replacements has been extensively studied, but little is known about patellar tracking in isolated patellofemoral replacements. We compared patellar tracking and the position of the patellar groove in the natural knee, followed by implantation of the femoral component of a PFR (patella unresurfaced) and after implantation of the femoral & patellar component of the PFR. Computer navigation was used to track the patella in eight whole lower extremities of four cadavers in the natural knee, in the same knee with the femoral component of the PFR (PFR-P) and with the femoral and patellar component of the PFR (PFR+P, patella resurfaced) (Depuy Sigma PFR). The form and position of the trochlea in the natural knee and the patellar groove of the femoral component was also analysed. Values are means+/−SD, two tailed Student's t-test for paired samples.Introduction
Methods