Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 132 - 132
1 Feb 2017
MacDonald D Chen A Lee G Klein G Cates H Mont M Rimnac C Kurtz S
Full Access

Introduction

During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. Previous studies have observed that the use of a ceramic head can mitigate the extent of corrosion damage at the taper. Moreover, in vitro testing suggests that corrosion is not a concern in sleeved ceramic heads [1]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads.

Materials and Methods

Thirty sleeved ceramic heads (Biolox Option: CeramTec) were collected during revision surgery as part of a multi-center retrieval program. The sleeves were used in conjunction with a zirconia-toughened alumina femoral head. The femoral heads and sleeves were implanted between 0.0 and 3.25 years (0.8±0.9, Figure 1). The implants were revised predominantly for instability (n=14), infection (n=7), and loosening (n=5). Fifty percent of the retrievals were implanted during a primary surgery, while 50% had a history of a prior revision surgery. Fretting corrosion was scored using a previously described 4-point, semi-quantitative scoring system proposed by Higgs [2].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 11 - 11
1 May 2016
MacDonald D Mehta K Klein G Hartzband M Levine H Mont M Kurtz S
Full Access

Introduction

Thermally treated 1st generation highly crosslinked polyethylenes (HXLPE) have demonstrated reduced penetration and osteolysis rates, however, concerns still remain with respect to oxidative stability and mechanical properties of these materials. To address these concerns, manufacturers have introduced the use of antioxidants to quench free radicals while maintaining the mechanical properties of the HXLPE. Two common antioxidants are α-tocopherol (Vitamin-E) and pentaerythritol tetrakis (PBHP). These may be either mixed prior to consolidation, or diffused throughout the polymer after consolidation and irradiation. In vitrostudies have shown that these materials are oxidatively stable and have improved mechanical properties compared to 1st generation HXLPEs; however, few studies have investigated the in vivo performance of anti-oxidant stabilized HXLPE. The purpose of this study was to investigate the revision reasons, oxidation, and mechanical properties of retrieved short-term anti-oxidant HXLPE.

Methods

Between 2010 and 2015, 73 anti-oxidant HXLPE components were collected as a part of an IRB approved, multi-institutional retrieval analysis program during routine revision surgery. Of the seventy-three components, 30 (41%) were acetabular liners, whereas, 43 were tibial inserts. The components were fabricated from three different materials: Vitamin-E Diffused HXLPE (n=30; E1, Biomet), Vitamin-E Blended (n = 41; Vivacit-E, Zimmer) and PBHP blended (n = 2, AOX, DePuy). The hip and knee components were implanted for 0.7 ± 0.8 years (Range: 0.0–2.25 years) and 0.8 ± 1.1 years (Range: 0.0–4.5 years), respectively. Implantation time, patient weight, age, gender, and activity levels were similar between hip and knee components (Table 1).

For oxidation analysis, thin slices (∼200μm) were taken from medial condyle and central eminence of the tibial inserts or the superior/inferior axis from hip components. The slices were boiled in heptane for six hours to extract lipids absorbed in vivo. 3-millimeter FTIR line scans were taken perpendicular to the surface of interest, according to the ASTM F2102. Mechanical properties were assessed using the small punch test (ASTM F2183). Forty-three explants were available for destructive testing.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 23 - 23
1 May 2016
Arnholt C MacDonald D Kocagoz S Chen A Cates H Klein G Rimnac C Kurtz S
Full Access

Introduction

Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs.

Methods

308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening.

Third-body abrasive wear of CoCr was evaluated using a semi-quantitative scoring method similar to the Hood method (Figure 1). A score of 1 had minimal damage and a score of 4 corresponded to damage covering more than 50% of the evaluated area. ICIC damage was reported as location of affected area. A white light interferometer (Zygo New View 5000) was also used to analyze the topography of severe damage of the bearing surface. For this analysis, three representative components from each cohort were selected and analyzed in three locations on the apex of the bearing surface. We analyzed the following roughness parameters: Ra, Rsk, and Rku.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 10 - 10
1 May 2016
MacDonald D Schachtner J Chen A Cates H Klein G Mont M Kraay M Malkani A Lee G Hamlin B Rimnac C Kurtz S
Full Access

Introduction

Highly crosslinked polyethylene (HXLPE) was clinically introduced approximately a decade and a half ago to reduce polyethylene wear rates and subsequent osteolysis. Clinical and radiographic studies have repeatedly shown increased wear resistance, however concerns of rim oxidation and fatigue fracture remain. Although short to intermediate term retrieval studies of these materials are available, the long-term behavior of these materials remains unclear.

Methods

Between 2000 and 2015, 115 1st generation HXLPE acetabular liners implanted for 5 or more years were collected and analyzed as part of an ongoing, multi-institutional orthopaedic implant retrieval program. There were two material cohorts based on thermal processing (annealed (n=45) and remelted (n=70)). Each cohort was stratified into two more cohorts based on implantation time (5 – 10 years and >10 years). For annealed components, the intermediate-term liners (n=30) were implanted on average (±SD) for 7.3 ± 1.7 years while the long-term liners (n=15) were implanted for 11.3 ± 1.8 years. For remelted components, the intermediate-term liners (n=59) were implanted on average (±SD) for 7.2 ± 1.3 years while the long-term liners (n=11) were implanted for 11.3 ± 1.2 years. For each cohort, the predominant revision reasons were loosening, instability, and infection (Figure 1). Short-term liners (in-vivo <5ys) from previous studies were analyzed using the same protocol for use as a reference.

For oxidation analysis, thin slices (∼200 μm) were taken from the superior/inferior axis and subsequently boiled in heptane for 6 hours to remove absorbed lipids that may interfere with the oxidation analysis. 3mm line profiles (in 100μm increments) were taken perpendicular to the surface at each region of interest. Oxidation indices were calculated according to ASTM 2102. Penetration was measured directly using a calibrated micrometer (accuracy=0.001mm).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 129 - 129
1 May 2016
Kurtz S Arnholt C MacDonald D Higgs G Underwood R Chen A Klein G Hamlin B Lee G Mont M Cates H Malkani A Kraay M Rimnac C
Full Access

Introduction

Previous studies of retrieved CoCr alloy femoral heads have identified imprinting of the stem taper surface features onto the interior head bore, leading researchers to hypothesize that stem taper microgrooves may influence taper corrosion. However, little is known about the role of stem taper surface morphology on the magnitude of in vivo corrosion damage. We designed a matched cohort retrieval study to examine this issue.

Methods

From a multi-institutional retrieval collection of over 3,000 THAs, 120 femoral head-stem pairs were analyzed for evidence of fretting and corrosion using a visual scoring technique based on the severity and extent of fretting and corrosion damage observed at the taper. A matched cohort design was used in which 60 CoCr head-stem pairs with a smooth stem taper were matched with 60 CoCr head-stem pairs having a micro-grooved surface, based on implantation time, flexural rigidity, apparent length of taper engagement, and head size. This study was adequately powered to detect a difference of 0.5 in corrosion scores between the two cohorts, with a power of 82% and 95% confidence. Both cohorts included CoCr and Ti-6-4 alloy femoral stems. A high precision roundness machine (Talyrond 585, Taylor Hobson, UK) was used to measure surface morphology and categorize the stem tapers into smooth vs. micro-grooved categories. Fretting and corrosion damage at the head/neck junction was characterized using a modified semi-quantitative adapted from the Goldberg method by three independent observers. This method separated corrosion damage into four visually determined categories: minimal, mild, moderate and severe damage.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 4 - 4
1 Jan 2016
MacDonald D Clarkin-Wright G Parvizi J Lee G Klein G Rimnac C Gilbert J Kurtz S
Full Access

Introduction

In THA, fretting corrosion at the head-stem taper junction has emerged as a clinical concern that may result in adverse local tissue reactions, even in patients with a metal-on-polyethylene bearing [1]. Taper junctions that employ a ceramic head have demonstrated reduced corrosion at the interface [2]. However, during revision surgery with a well-fixed stem, a titanium sleeve is used in conjunction with a ceramic head to ensure proper fit of the head onto the stem and better stress distribution. In vitro testing has suggested that corrosion is not a concern in sleeved ceramic heads [3]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads.

Materials and Methods

Between 2001 and 2014, 35 sleeved ceramic heads were collected during revision surgery as part of a multi-center retrieval program. The sleeves were all fabricated from titanium alloy and manufactured by 4 companies (CeramTec (n=14), Smith & Nephew (Richards, n=11), Stryker (n=5), and Zimmer (n=5)). The femoral heads were made from 3 ceramics (Alumina (n=7), Zirconia (n=11), and Zirconia-toughened Alumina (n=17)). Sleeve dimensions (length and thickness) were measured using calibrated calipers. Fretting corrosion of the sleeves and available associated stems was scored using a 4-point, semi-quantitative scoring system [4], with 1 being little-to-no damage, and 4 corresponded to severe fretting corrosion. Five sleeves could not be extracted; thus the external surface was not scored.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 154 - 154
1 Jul 2014
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani A Parvizi J Kraay M Rimnac C Klein G
Full Access

Summary Statement

This study assesses oxidation, mechanical behavior and revision reasons of 2nd generation HXLPE used in total hip and knee arthroplasty. While oxidation was low for both X3 and E1 HXLPEs, oxidative regional variations were detected in the sequentially annealed cohort.

Introduction

First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1st generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2nd generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2nd generation HLXPEs. The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 145 - 145
1 Jul 2014
Kurtz S MacDonald D Higgs G Gilbert J Klein G Mont M Parvizi J Kraay M Rimnac C
Full Access

Summary Statement

Fretting and corrosion has been identified as a clinical problem in modular metal-on-metal THA, but remains poorly understood in modern THA devices with polyethylene bearings. This study investigates taper damage and if this damage is associated with polyethylene wear.

Introduction

Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterise the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 11 - 11
1 Sep 2012
Sheth U Simunovic N Klein G Fu F Einhorn T Schemitsch EH Ayeni O Bhandari M
Full Access

Purpose

The recent emergence of autologous blood concentrates, such as platelet rich plasma (PRP), as a treatment option for patients with orthopaedic injuries has led to an extensive debate about their clinical benefit. Our objective was to determine the effectiveness of autologous blood concentrates compared with control therapy in improving pain in patients with orthopaedic bone and soft tissue injuries.

Method

We conducted a systematic review of MEDLINE and EMBASE from 1996 and 1947, respectively, up to July 2010. Additional studies were identified by contacting experts, searching the bibliographies of the included studies as well as orthopaedic meeting archives. We included published and unpublished randomized controlled trials or prospective cohort studies that compared autologous blood concentrates with a control therapy in patients with an orthopaedic injury. Two reviewers, working in duplicate, abstracted data on study characteristics and protocol. Reviewers resolved disagreement by consensus.