Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 88 - 88
14 Nov 2024
Gögele CL Fleischmann N Hofman S Frank E Werner C Kokozidou M Tanzil GS
Full Access

Introduction

Diabetes mellitus type 2 (DMT2) patients often develop Achilles tendon (AS) degeneration. The ZDF rat model is often used to study DMT2. Hence, this study investigated whether tenocytes isolated from diabetic and non diabetic ZDF rats respond differentially to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis (TNF)α.

Method

AS tenocytes isolated from adult diabetic (fa/fa) or lean (fa/+) Zucker Diabetic Fatty (ZDF) rats were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L versus 4.5 g/L glucose). Tendons were characterized histopathologically using Movin score. Tenocyte survival, metabolic activity, gene and/or protein expression of the main tendon extracellular matrix (ECM) component collagen type 1, the myofibroblast marker alpha smooth muscle actin (αSMA, Acta2), complement regulatory factors, the antioxidant defense enzyme heme oxygenase-1 (Hmox1), suppressors of cytokine signaling (Socs)1 and Soc3 were analyzed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 46 - 46
2 Jan 2024
Fleischmann N Braun T Reinhardt A Schotte T Wehrmann J Rüdig V Gögele C Kokozidou M Werner C Schulze-Tanzil G
Full Access

Osteoarthritis (OA) and diabetis mellitus type 2 (DMT2) are pathogenetically linked. Complement dysregulation contributes to OA and could be involved in DMT2. The inflammatory anaphylatoxin C5a is released during complement activation. This study aims to understand the specific responses of chondrocytes isolated from diabetic and non-diabetic rats exposed to C5a and/or the proinflammatory cytokine TNFα in vitro dependent on the glucose supply. Articular chondrocytes of adult Zucker Diabetic Fatty (ZDF) rats (homozygous: fa/fa, diabetic, heterozygous: fa/+, lean controls) were exposed to 10 ng/mL TNFα and 25 ng/mL C5a alone or in combination, both, under normo- (NG, 1 g/L glucose) and hyperglycemic (HG, 4.5 g/L glucose) conditions (4 or 24 h). Chondrocyte survival, metabolic activity and gene expression of collagen type 2, suppressors of cytokine signaling (SOCS)1, −3 and anti-oxidative hemoxygenase-1 (HMOX1) were assessed. The complement regulatory protein CD46 and cell nuclei sizes were analyzed. Chondrocyte vitality remained unaffected by the treatment. Metabolic activity was impaired in chondrocytes of non-diabetic rats under HG conditions. Collagen type 2 transcription was suppressed by TNFα under HG condition in chondrocytes from nondiabetic donors and under both conditions in those of DMT2 rats (24 h)

Except for DMT2 chondrocytes under HG (4 h), HMOX1 was generally induced by TNFα +/- C5a (NG, HG). C5a elevated HMOX1 only in chondrocytes of controls. The SOCS1/3 genes were increased by TNFα (NG, diabetic, non diabetic, 4 and 24 h). This could also be observed in chondrocytes of diabetic, but not of lean rats (24 h, HG). At 4 h, C5a induced SOCS1 only in non diabetic chondrocytes (NG, HG). Cytoprotective CD46 protein was suppressed by TNFα under NG condition. Nuclear volumes of chondrocyte were lower in chondrocytes from DMT2 rats compared to those from controls. The differential response suggests that chondrocytes are irreversibly compromised by DMT2.

Achnowledgement: The authors are grateful for the support by the “Stiftung Edoprothetik (S 04/21)”


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 82 - 82
4 Apr 2023
Kokozidou M Gögele C Pirrung F Hammer N Werner C Kohl B Hahn J Breier A Schöpfer M Meyer M Schulze-Tanzil G
Full Access

Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This given study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or gas fluorination combined with the foam (F+coll). Cell free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, biomechanical properties, cell vitality and content, histopathology of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed.

Implantation of the scaffolds did not negatively affect mice weight development and organs, indicating biocompatibility. All scaffolds maintained their size and shape for the duration of the implantation. A high cell viability was detected in the scaffolds prior to and following implantation. Coll or F+coll scaffolds seeded with cells yielded superior macroscopic properties when compared to the controls. Mild signs of inflammation (foreign-body giant cells, hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable in vivo, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in the in vivo compared to the samples cultured 1 week in vitro, but did not differ between scaffold subtypes, except for a higher maximum force in F+coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering.

(shared first authorship)

Acknowledgement: The study was supported by DFG grants SCHU1979/9-1 and SCHU1979/14-1.