Our aim was to investigate whether it is possible to predict post-operative kinematics (Post-Ope) from intra-operative kinematics (Intra-Ope) after total knee arthroplasty. Our study were performed for 11 patients (14 knees) who underwent primary PS TKA using CT-based navigation system between Sept.2012 and Sept.2014. The mean subject age was 71.5 ± 5.5 years at the time of surgery. Intra-Ope was measured using the navigation system after implantation during passive full extension and flexion imposed by the surgeon. Under fluoroscopic surveillance, each patient was asked to perform sequential deep knee flexion under both non-weight bearing (NWB) and weight bearing (WB) conditions from full extension to maximum flexion. To estimate the spatial position and orientation, we used a 2- to 3- dimensional (2D3D) registration technique. Intra-Ope and Post-Ope had a common coordinate axis for bones. Evaluations were range of motion (ROM), external rotation angles (ER). The level of statistical significant difference was set at 0.05. Mean ROM in Intra-Ope(130°± 7.9°) was statistically larger than both NWB(121.1°±10.5°) and WB(124.0°±14.7°). No Statistically significant difference was found in the mean ER from 10° to 120° among Intra-Ope (11.2°± 8.5°) and NWB(7.1°±6.0°) and WB(5.3°±3.2°). It is suggested that we could predict Post-Ope from Intra-Ope by considering the increase of the range of motion due to the muscle relaxation condition and the amount of change in the ER.
Bi-cruciate stabilized (BCS) TKA is the prosthesis that aims to substitute bi-cruciate ligament with post-cam engagement. We estimated to describe the
There are few studies that have compared between continuous flexion activities and extension activities of normal knees. The purpose of this study is to compare