The ability of optimised MRI to detect periarticular bony and soft tissue pathology in the post-arthroplasty hip is well documented; specifically it is able to detect early stages of particle disease well before osteolysis is apparent on radiographs. This is a prospective study designed to utilise MRI for the detection of early particle disease in asymptomatic patients after total hip arthroplasty. Patients who underwent routine non-cemented THA were recruited from three different groups: metal-on-polyethylene, ceramic-on-ceramic, and ceramic-on-polyethylene bearing surfaces. All patients enrolled underwent optimised MRI one to three years (mean 1.7) after the index procedure. Images were analyzed for the presence of synovial proliferation, fibrous membrane formation or osteolysis. Particle disease was correlated with type of bearing surface, pain, activity level, patient satisfaction, and clinical outcome scales. Thirty-two hips have been enrolled in the study to date. Early particle disease was seen in two of seven metal-on-polyethylene hips (29%), four of twelve ceramic-on-ceramic hips (33%), and six of thirteen ceramic-on-polyethylene hips (46%). Focal osteolysis was seen in one patient with a ceramic-on-polyethylene hip. These values were not statistically significant among the groups. The presence of early particle disease did not correlate with pain, activity level, patient satisfaction, or other clinical outcome scales. This study allows patients with a well functioning total hip arthroplasty to be prospectively followed with MRI. It is the first to document the natural history of particle disease in vivo and considerably enhances our knowledge of periarticular pathology in the post-operative hip. These results demonstrate early particle disease is relatively common yet asymptomatic; they do not demonstrate advantages of any bearing couple over another for protection against particle disease at short-term follow-up.
We previously reported no clinical differences in short-term results in 26 patients that underwent fixed-bearing (FB) total knee arthroplasty in one knee followed by a rotating-platform (RP) version of the same implant in the contralateral knee at a later date. This study presents intermediate-term results in this unique cohort and uses optimised MRI for detection of particle disease in both knees. Patients from the original series were asked to complete questionnaires regarding both knees. In addition, both knees were evaluated with optimised MRI, which has been shown to be useful in evaluating early particle disease and osteolysis before its appearance on radiographs. Nine patients have been enrolled to date. At an average follow-up of 8.3 years for the FB side and 6.5 years for the RP side, no significant differences were found with respect to knee preference, pain, or overall satisfaction. Seven patients underwent MRI studies of both knees. Two FB knees demonstrated a massive intracapsular burden of particle disease (average 3066 mm3) with reactive synovitis, compared to no obvious particle disease in any RP knees. Osteolysis was seen around the femur in one FB knee and around the patella in two FB knees, compared to only around a single patella in the RP side. RP knees continue to demonstrate excellent patient satisfaction that is comparable to clinical results of the FB design; however, FB knees demonstrate higher rates of particle disease and early osteolysis on MRI. This is the first study to demonstrate in vivo advantages of RP over FB designs. It is unclear whether this is due to the slightly longer follow-up period for the FB knees or a decreased wear rate in the RP design; these differences may become apparent with longitudinal follow-up.