Total joint replacement is a successful clinical intervention. However, aseptic loosening due to wear related particulate debris is still one of the most frequent reasons for late revision of total joint replacement. This lecture gives an overview about the application of methods to study wear and friction in total joint replacements (e.g. hip, knee, shoulder). This involves complex joint simulation conditions as well as analytical assessments. Regarding joint simulation the focus will be on ligament stabilized joints. New approaches will be shown and discussed. Furthermore, analytical methods to study the release of wear products in term of solid particles and soluble complexes like metal ions will be presented.
The CoCrMo large bearings had shown a high failure rate, because of metal ion and particle release. Alumina matrix composite (AMC) ball heads have shown to mitigate such phenomena. The aim of this study was to investigate the leaching properties of AMC clinically as well as experimentally. Two patient groups were compared: a control group (n=15) without any implant (Controls) and 15 Patients with unilateral treatment with Biolox delta ceramic-on-ceramic (CoC). Whole-blood samples of Controls and Patients (after 3 and 12 months from treatment with CoC) were measured by means of trace element analysis using a HR-ICPMS. The leaching behaviour of BIOLOX delta was also analysed in-vitro: five Biolox delta heads and five CoCrMo heads were immersed in serum for seven days at 37°C. Aluminium, cobalt, chromium and strontium were detected based on HR-ICPMS.Background
Methods