The biological reaction in metallosis and pseudotumor generation after metal on metal total hip arthroplasty or corroding metal implants remains unsettled. Clinically, still lethal cases appear with massive bone loss and metal ions are suspected to be responsible for this inflammatory reaction, solid metal wear particles instead are usually not observed in the common literature. The aim of this study was to compare the biological reactions of metal ions and metal wear particles in a murine in vivo model. Metal ions (CoCr), metal particles (CoCr), polyethylene particles (UHMWPE) and phosphate buffered saline (PBS) were injected into the left knee joint of female BALB/c mice. 7 days after injection, the microcirculation was observed using intravital fluorescence microscopy, followed by euthanasia of the animals. After the assessment of the knee diameter, the knees underwent histological evaluations of the synovial layer. Throughout all recorded data, CoCr particles caused higher inflammatory reactions compared to metal ions and UHMWPE particles. The mice treated with the solid particles showed enlarged knee diameters, more intensive leukocyte–endothelial cell interactions and an elevated functional capillary density. Pseudotumor-like tissue formations in the synovial layer of the mice were only seen after the exposition to solid CoCr particles. Even if the focus of several national guidelines concerning metallosis and pseudotumor generation is on metal ions, the present data reveal that solid CoCr particles have the strongest inflammatory activity compared with metal ions and UHMWPE particles in vivo.