Modern total shoulder arthroplasty seeks to produce a construct that reproduces the kinematics and stability of the native glenohumeral joint. The latest 4th generation implants are modular, adaptable, and capable of use as either anatomic or reverse shoulder arthroplasty components. During surgery, these implants are “universal”; post-operatively, they are “convertible”. Recent work has demonstrated that reverse shoulder arthroplasty components may indeed be the emerging standard of care for most (if not all) shoulder arthroplasty indications. As this new frontier develops, the use of a convertible/universal implant creates the flexibility to individually choose the best surgical option for each patient.
Reverse total shoulder arthroplasty (TSA) has demonstrated success in restoring active elevation for patients with rotator cuff dysfunction (with or without arthritis). However, recovery of active external rotation after reverse TSA has demonstrated variable success. Transfer of the latissimus dorsi has shown promise in restoring active external rotation in those patients with profound external rotation deficits. The combined latissimus transfer and reverse TSA procedure is intra-operatively challenging and fraught with post-operative complications. Technical details and precise indications are necessary to produce the best chance of success with this operation.
Stemless shoulder arthroplasty implants for the proximal humerus provide cementless metaphyseal prosthetic fixation. A near-perfect anatomic restoration of the proximal humeral articular surface is possible with this canal-sparing design—avoiding the risks associated with humeral stems and preserving bone for later revision. When compared with proximal humeral resurfacing, stemless arthroplasty avoids the potential technical errors that may lead to oversized implants, abnormal shift of the glenohumeral joint center of rotation, and excessive strain on the native rotator cuff. While canal-sparing stemless implants represent a new concept in shoulder arthroplasty without mid- and long-term results, the failures associated with resurfacing humeral arthroplasty have been documented in the literature. Unlike a stemless component, use of a resurfacing technique (and hence preservation of the humeral head) makes glenoid prosthetic implantation challenging and often impossible.
While the definition of “stiffness” after shoulder arthroplasty remains controversial, loss of range of motion in the post-arthroplasty setting can be a disabling functional complication. Fortunately, the incidence of post-operative loss of both active and passive range of motion is relatively less common following shoulder replacement procedures. Certain pre-operative diagnoses (proximal humeral fracture, capsulorraphy arthropathy, revision arthroplasty) are associated with post-operative soft tissue contractures. Certain medical comorbidities (diabetes, inflammatory arthropathy) are associated with periarticular capsular adhesions at the intracellular level. Management of the “stiff” shoulder arthroplasty must account for several confounding variables:
Appropriateness of diagnosis leading to arthroplasty Humeral and glenoid implants (size, version, hemi vs TSA vs RSA) Bone variables (fracture, bone loss/erosion) Soft tissue variables (rotator cuff, glenohumeral capsule) Patient comorbidities Techniques for management include soft tissue contracture release (manipulation, arthroscopic, open) and component revision.
The classic Hill-Sachs lesion is a compression or impression fracture of the humeral head in occurrence with anterior glenohumeral instability. The true incidence is unknown but clearly increases with recurrent instability episodes. Recent peer-reviewed literature has highlighted the importance of addressing “significant” humeral and glenoid bone defects in the management of glenohumeral instability. Quantification of the “significance” of a Hill-Sachs lesion with regard to location, size, and depth in relation to the glenoid has helped guide indications for surgical management. Options for managing Hill-Sachs lesions include both humeral-sided techniques (soft tissue, bone, and/or prosthetic techniques) and also glenoid-sided techniques (bone transfers to increase glenoid width). The majority of significant acute or chronic Hill-Sachs lesions can be effectively managed without prosthetic replacement. Is a prosthetic surface replacement ever indicated for the management of Hill-Sachs lesions? The peer-reviewed literature is sparse with the outcomes of this treatment, and significant consideration must be given to both the age of the patient and the need for such management when other effective non-prosthetic options exist. In a patient with more than half of the humeral head involved after instability episodes (perhaps seizure or polytrauma patients), metallic surface replacement arthroplasty may be an option that could require less involved post-operative care while restoring range of motion and stability.
High functional aspirations and an active ageing population equate to a growing number of patients awaiting hip arthroplasty demanding superior biomechanical function. The purpose of this study was to compare the biomechanics of top walking speed between two commonly used hip arthroplasty procedures to determine if a performance advantage existed. A retrospective comparative study was performed using sixty-seven subjects, twenty-two subjects in both hip resurfacing and total hip arthroplasty groups along with twenty-three healthy controls. All arthroplasty subjects were recruited based on high psychometric scoring and had been performed through a posterior approach, and had been discharged from follow-up. On an instrumented treadmill each subject was measured by a researcher blinded to which procedure that patient had undergone. After a six minute acclimatization period, the speed was increased incrementally until top walking performance had been attained. At all increments, ground reaction forces and temporospatial measurements were collected.Background
Methods
To investigate (1) The relationship between macroscopic grading and durability of cartilage repair following collagen-covered autologous chondrocyte implantation (ACI-C) in the knee; (2) The influence of histology on durability of cartilage repair; (3) The relationship between macroscopic appearance and histology of repair tissue. The modified Cincinnati scores (MCRS) of eighty-six patients were evaluated prospectively at one year and at the latest follow-up (mean follow-up = 4.7yrs. Range = 4 to 7 years). Needle biopsies of their cartilage repair site were stained with Haematoxylin and Eosin and some with Safranin O and the neo-cartilage was graded as hyaline-like (n=32, 37.2%), mixed fibro-hyaline (n=19, 22%) and fibro-cartilagenous tissue (n=35, 40.7%). Macroscopic grading of the repair tissue using the international cartilage repair society grading system (ICRS) was available for fifty-six patients in the study cohort. Statistical analyses were performed to investigate the significance of histology and ICRS grading on MCRS at 1 year and at the latest follow-up.Aims
Patients and methods
We report on minimum 2 year follow-up results of 71 patients randomised to autologous chondrocyte implantation (ACI) using porcine-derived collagen membrane as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) for the treatment of osteochondral defects of the knee. ACI is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes.Purpose
Introduction