Senile kyphosis arises from anterior ‘wedge’ deformity of thoracolumbar vertebrae, often in the absence of trauma. It is difficult to reproduce these deformities in cadaveric spines, because a vertebral endplate usually fails first. We hypothesise that endplate fracture concentrates sufficient loading on to the anterior cortex that a wedge deformity develops subsequently under physiological repetitive loading. Thirty-four cadaveric thoracolumbar “motion segments,” aged 70–97 yrs, were overloaded in combined bending and compression. Physiologically-reasonable cyclic loading was then applied, at progressively higher loads, for up to 2 hrs. Before and after fracture, and again after cyclic loading the Introduction
Methods
Osteoporotic vertebral fractures can cause severe vertebral wedging and kyphotic deformity. This study tested the hypothesis that kyphoplasty restores vertebral height, shape and mechanical function to a greater extent than vertebroplasty following severe wedge fractures. Pairs of thoracolumbar “motion segments” from seventeen cadavers (70–97 yrs) were compressed to failure in moderate flexion and then cyclically loaded to create severe wedge deformity. One of each pair underwent vertebroplasty and the other kyphoplasty. Specimens were then creep loaded at 1.0kN for 1 hour. At each stage of the experiment the following parameters were measured: vertebral height and wedge angle from radiographs, motion segment compressive stiffness, and stress distributions within the intervertebral discs. The latter indicated intra-discal pressure (IDP) and neural arch load-bearing (FN).Introduction
Methods
Senile kyphosis arises from anterior ‘wedge’ deformity of thoracolumbar vertebrae, often in the absence of trauma. It is difficult to reproduce these deformities in cadaveric spines, because a vertebral endplate usually fails first. We hypothesise that endplate fracture concentrates sufficient loading on to the anterior cortex that a wedge deformity develops subsequently under physiological repetitive loading. Thirty-four cadaveric thoracolumbar “motion segments,” aged 70–97 yrs, were overloaded in combined bending and compression. Physiologically-reasonable cyclic loading was then applied, at progressively higher loads, for up to 2 hrs. Before and after fracture, and again after cyclic loading the distribution of compressive loading on the vertebral body was assessed from recordings of compressive stress along the sagittal mid-plane of the adjacent intervertebral disc. Vertebral deformity was assessed from radiographs at the beginning and end of testing.Introduction
Methods