Persistent anterior knee pain, subluxation or dislocation of the patella as well as early aseptic loosening and increased polyethylene wear of the patella implant are common clinical problems after total knee arthroplasty (TKA) which are associated with the patellofemoral joint. In addition to patellar resurfacing, the design of the patellofemoral joint surfaces is attributed a large influence. While for patients without patella resurfacing, the native patella is sliding on the standardized femoral component and therefore the possibility of a reduced surface matching is high, patella resurfacing has been shown to decrease the joint contact area and yield to increased patellofemoral pressure. With regard to a further design optimization, the current study examined patellar biomechanics after TKA without and with resurfacing, comparing 5 differently designed patellofemoral joint surfaces of the femoral implant. The femoral implant of the Genesis II prosthesis (Smith & Nephew) was scanned and an adaptable CAD-model was built using CATIA. Five different designs of the patellofemoral groove were created: original completely flat laterally elevated (+2mm lateral, −1mm medial) medially elevated (+2mm medial, −1mm lateral) laterally & medially elevated (+3mm lateral+medial) The tibiofemoral joint as well as patellofemoral groove path and radius remained unchanged. Rapid Prototyping was used to produce prototypes made of polyamide. A dynamic muscle loaded knee squat was simulated on 10 fresh frozen knee specimens with an upright knee simulator. The patellofemoral pressure distribution was measured using a flexible, resistive force sensor (TEKSCAN) while tibiofemoral and patellofemoral kinematics were recorded with an ultrasonic motion tracking system (ZEBRIS). In addition, patellar stability was measured in different flexion angles on another 10 specimens using a robot (KUKA). Measurements were taken on the native knee as well as after TKA and after additional patellar resurfacing with alternating femoral implant.Introduction
Methods
Our aim was to determine the precision of the measurements of bone mineral density (BMD) by dual-energy x-ray absorptiometry in the proximal femur before and after implantation of an uncemented implant, with particular regard to the significance of retro- and prospective studies. We examined 60 patients to determine the difference in preoperative BMD between osteoarthritic and healthy hips. The results showed a preoperative BMD of the affected hip which was lower by a mean of 4% and by a maximum of 9% compared with the opposite side. In addition, measurements were made in the operated hip before and at ten days after operation to determine the effect of the implantation of an uncemented custom-made femoral stem. The mean increase in the BMD was 8% and the maximum was 24%. Previous retrospective studies have reported a marked loss of BMD on the operated side. The precision of double measurements using a special foot jig showed a modified coefficient of variation of 0.6% for the non-operated side in 15 patients and of 0.6% for the operated femur in 20 patients. The effect of rotation on the precision of the measurements after implantation of an uncemented femoral stem was determined in ten explanted femora and for the operated side in ten patients at 10° rotation and in 20 patients at 30° rotation. Rotation within 30° influenced the precision in studies in vivo and in vitro by a mean of 3% and in single cases in up to 60%. Precise prediction of the degree of loss of BMD is thus only possible in prospective cross-sectional measurements, since the effect of the difference in preoperative BMD, as well as the apparent increase in BMD after implantation of an uncemented stem, is not known from retrospective studies. The DEXA method is a reliable procedure for determining periprosthetic BMD when positioning and rotation are strictly controlled.