Following anterior cruciate ligament reconstruction (ACLR) using a semitendinosus (ST) autograft measures such as length, cross-sectional area, and volume may not fully describe the effects of tendon harvest on muscle morphology as these discrete measures cannot characterize three-dimensional muscle shape. This study aimed to determine between-limb ST shape similarity and regional morphology in individuals with a unilateral history of ACLR using a ST graft, and healthy controls. A secondary analysis of magnetic resonance imaging was undertaken from 18 individuals with unilateral history of ST ACLR and 18 healthy controls. ST muscles were manually segmented, and shape similarity were assessed between limbs and groups using Jaccard index (0-1) and Hausdorff distance (mm). ST length (cm), peak cross-sectional area (CSA) (cm2), and volume (cm3) was compared between surgically reconstructed and uninjured contralateral limbs, and between the left and right limbs of control participants with no history of injury. Cohen's d was reported as a measure of effect size. Compared to healthy controls, the ACLR group had significantly (p<0.001, d= −2.33) lower bilateral ST shape similarity. Furthermore, the deviation in muscle shape was significantly (p<0.001, d= 2.12) greater in the ACLR group. Within the ACLR group, maximum Hausdorff distance indicated ST from the ACLR limb deviated (23.1±8.68 mm) from the shape of the healthy contralateral ST, this was observed particularly within the distal region of the muscle. Compared to the uninjured contralateral limb and healthy controls, deficits in peak cross-sectional area and volume in ACLR group were largest in proximal (p<0.001, d= −2.52 to −1.28) and middle (p<0.001, d= −1.81 to −1.04) regions. Findings highlight morphological features in distal ST not identified by traditional discrete morphology measures. ST shape was most different in the distal region of the muscle, despite deficits in CSA and volume being most pronounced in proximal and middle regions. ST shape following ACLR may affect force transmission and distribution within the hamstrings and contribute to persistent deficits in knee flexor and internal rotator strength.
Anterior cruciate ligament reconstruction (ACLR) using a semitendinosus (ST) autograft, with or without gracilis (GR), results in donor muscle atrophy and varied tendon regeneration. The effects of harvesting these muscles on muscle moment arm and torque generating capacity have not been well described. This study aimed to determine between-limb differences (ACLR vs uninjured contralateral) in muscle moment arm and torque generating capacity across a full range of hip and knee motions. A secondary analysis of magnetic resonance imaging was undertaken from 8 individuals with unilateral history of ST-GR ACLR with complete ST tendon regeneration. All hamstring muscles and ST tendons were manually segmented. Muscle length (cm), peak cross-sectional area (CSA) (cm2), and volume (cm3) were measured in ACLR and uninjured contralateral limbs. OpenSim was used to simulate and evaluate the mechanical consequences of changes in normalised moment arm (m) and torque generating capacity (N.m) between ACLR and uninjured contralateral limbs. Compared to uninjured contralateral limbs, regenerated ST tendon re-insertion varied proximal (+) (mean = 0.66cm, maximum = 3.44cm, minimum = −2.17cm, range = 5.61cm) and posterior (+) (mean = 0.38cm maximum = 0.71cm, minimum = 0.02cm, range = 0.69cm) locations relative to native anatomical positions. Compared to uninjured contralateral limbs, change in ST tendon insertion point in ACLR limbs resulted in 2.5% loss in peak moment arm and a 3.4% loss in peak torque generating capacity. Accounting for changes to both max isometric force and ST moment arm, the ST had a 14.8% loss in peak torque generating capacity. There are significant deficits in ST muscle morphology and insertion points following ST-GR ACLR. The ST atrophy and insertion point migration following ACLR may affect force transmission and distribution within the hamstrings and contribute to persistent deficits in knee flexor and internal rotator strength.
There is currently no commercially available and clinically successful treatment for scapholunate interosseous ligament rupture, the latter leading to the development of hand-wrist osteoarthritis. We have created a novel biodegradable implant which fixed the dissociated scaphoid and lunate bones and encourages regeneration of the ruptured native ligament. To determine if scaphoid and lunate kinematics in cadaveric specimens were maintained during robotic manipulation, when comparing the native wrist with intact ligament and when the implant was installed. Ten cadaveric experiments were performed with identical conditions, except for implant geometry that was personalised to the anatomy of each cadaveric specimen. Each cadaveric arm was mounted upright in a six degrees of freedom robot using k-wires drilled through the radius, ulna, and metacarpals. Infrared markers were attached to scaphoid, lunate, radius, and 3rd metacarpal. Cadaveric specimens were robotically manipulated through flexion-extension and ulnar-radial deviation by ±40° and ±30°, respectively. The cadaveric scaphoid and lunate kinematics were examined with 1) intact native ligament, 2) severed ligament, 3) and installed implant. Digital wrist models were generated from computed tomography scans and included implant geometry, orientation, and location. Motion data were filtered and aligned relative to neutral wrist in the digital models of each specimen using anatomical landmarks. Implant insertion points in the scaphoid and lunate over time were then calculated using digital models, marker data, and inverse kinematics. Root mean squared distance was compared between severed and implant configurations, relative to intact. Preliminary data from five cadaveric specimens indicate that the implant reduced distance between scaphoid and lunate compared to severed configuration for all but three trials. Preliminary results indicate our novel implant reduced scapho-lunate gap caused by ligament transection. Future analysis will reveal if the implant can achieve wrist kinematics similar to the native intact wrist.
Subject specific FE models of human Achilles tendon were developed and optimum material properties were found. Stress concentration occurred at the midsection but dependent on stiffening and thinning of tendon, indicating that they are two major factors for tendon rupture. Achilles tendon injuries are common, occurring about 250,000 per year in the US alone, yet the mechanisms of tendinopathy and rupture remain unknown. Most Achilles tendon ruptures occur at 2 to 6 cm above the insertion to the calcaneus bone. Previous angiographic studies have suggested that there is an avascular area in this region. However, it is not understood why that region receives poor blood supply and prone to rupture. The aim of this study is to investigate influence of geometry and material properties on Achilles tendon rupture with mechanical experiment and corresponding subject-specific finite element (FE) analysis.Summary Statement
Introduction