Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 25 - 25
1 Jan 2017
Shih K Lin C Lu H Lin C Lu T
Full Access

Total knee replacements (TKR) have been the main choice of treatment for alleviating pain and restoring physical function in advanced degenerative osteoarthritis of the knee. Recently, there has been a rising interest in minimally invasive surgery TKR (MIS-TKR). However, accurate restoration of the knee axis presents a great challenge. Patient-specific-instrumented TKR (PSI-TKR) was thus developed to address the issue. However, the efficacy of this new approach has yet to be determined. The purpose of the current study was thus to measure and compare the 3D kinematics of the MIS-TKR and PSI-TKR in vivo during sit-to-stand using a 3D fluoroscopy technology.

Five patients each with MIS-TKR and PSI-TKR participated in the current study with informed written consent. Each subject performed quiet standing to define their own neutral positions and then sit-to-stand while under the surveillance of a bi-planar fluoroscopy system (ALLURA XPER FD, Philips). For the determination of the 3D TKR kinematics, the computer-aided design (CAD) model of the TKR for each subject was obtained from the manufacturer including femoral and tibial components and the plastic insert. At each image frame, the CAD model was registered to the fluoroscopy image via a validated 2D-to-3D registration method. The CAD model of each prosthesis component was embedded with a coordinate system with the origin at the mid-point of the femoral epicondyles, the z-axis directed to the right, the y-axis directed superiorly, and the x-axis directed anteriorly. From the accurately registered poses of the femoral and tibial components, the angles of the TKR were obtained following a z-x-y cardanic rotation sequence, corresponding to flexion/extension, adduction/abduction and internal/external rotation.

During sit-to-stand the patterns and magnitudes of the translations were similar between the MIS-TKR and PSI-TKR groups, with posterior translations ranging from 10–20 mm and proximal translations from 29–31mm. Differences in mediolateral translations existed between the groups but the magnitudes were too small to be clinically significant. For angular kinematics, both groups showed close-to-zero abduction/adduction, but the PSI-TKR group rotated externally from an internally rotated position (10° of internal rotation) to the neutral position, while the MIS-TKR group maintained at an externally rotated position of less than 5° during the movement.

During sit-to-stand both groups showed similar patterns and magnitudes in the translations but significant differences in the angular kinematics existed between the groups. While the MIS-TKR group maintained at an externally rotated position during the movement, the PSI-TKR group showed external rotations during knee extension, a pattern similar to the screw home mechanism in a normal knee, which may be related to more accurate restoration of the knee axis in the PSI-TKR group. A close-to-normal angular motion may be beneficial for maintaining a normal articular contact pattern, which is helpful for the endurance of the TKR. The current study was the first attempt to quantify the kinematic differences between PSI and non-PSI MIS. Further studies to include more subjects will be needed to confirm the current findings. More detailed analysis of the contact patterns is also needed.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 222 - 222
1 Jul 2014
Lu H Hu J Cao Y Wu T Li D Cao M
Full Access

Summary Statement

In this study, we employed a novel imaging modalities, the synchrotron radiation microcomputed tomography (SRμCT) to visualise the 3D morphology of the spinal cord microvasculature and successfully obtained the 3D images.

Introduction

Understanding the morphology of the spinal cord microvasculature in three-dimensions (3D) is limited by the lack of an effective high-resolution imaging technique. In this study, we used two novel imaging modalities, conventional x-ray microcomputed tomography (CμCT) and synchrotron radiation microcomputed tomography (SRμCT), to visualise the 3D morphology of the spinal cord microvasculature and to compare their utility in basic science research.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 20 - 20
1 Jul 2014
Lu H Hu J Zhou J Zeng Z Cao Y Chen C
Full Access

Summary Statement

We successfully delineated the 3D micro morphology of chondrocytes in patella-patellar tendon using IL-XPCT for the first time. Compared with conventional histology, IL-XPCT can not only provide a higher resolution imgaing but also keep the 3D integrity of the specimen.

Introduction

The morphology of the bone-tendon junction was complex and quite different from other organs, which result the injured bone-tendon junction repair process too slowly. To study the micro morphology of the bone-tendon junction in 3D may have a great significant value to revealing the repair mechanisms of this pathological process and accelerating injured bone-tendon junction repair. However, it was hindered by the convention methods such as histologic section. In our study, a novel imaging tool, synchrotron radiation based in-line x-ray phase contrast imaging (IL-XPCT) was used to research the 3D micro morphology of the bone-tendon junction.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 231 - 231
1 Jul 2014
Lu H Kuo C Lin C Lu T
Full Access

Summary Statement

The current study introduced the effects of projection errors on ankle morphological measurements using CT-based simulated radiographs by correlation analysis between 2D/3D dimensions and reliability analysis with randomised perturbations while measuring planar parameters on radiographs.

Introduction

Clinical success of total ankle arthroplasty (TAA) depends heavily on the available anatomy-based information of the morphology for using implants of precisely matched sizes. Among the clinically available medical imaging modalities, bi-planar projective radiographs are commonly used for this purpose owing to their convenience, low cost, and low radiation dose compared with other modalities such as MRI or CT. However, the intrinsic articular surface of the ankle joint is not symmetrical and oblique which implies that it is difficult to describe all the anatomical dimensions in detail with only one radiograph, thereby hindering the determination of accurate ankle morphometric parameters. The purposes of this study were to compare the measurements of ankle morphology using 3D CT images with those on planar 2D images; and to quantify the repeatability of the 2D measurements under simulated random perturbations.