Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 45 - 45
1 Nov 2021
Ramirez SC Stoker A Cook J Ma R
Full Access

Introduction and Objective

Anterior cruciate ligament reconstruction (ACLR) with tendon autografts is the “gold standard” technique for surgical treatment of ACL injuries. Common tendon graft choices include patellar tendon (PT), semitendinosus/gracilis “hamstring” tendon (HT), or quadriceps tendon (QT). Healing of the graft after ACLR may be affected by graft type since the tissue is subjected to mechanical stresses during post-operative rehabilitation that play important roles in graft integration, remodeling and maturation. Abnormal mechanical loading can result in high inflammatory and degradative processes and altered extracellular matrix (ECM) synthesis and remodeling, potentially modifying tissue structure, composition, and function. Because of the importance of load and ligamentization for tendon autografts, this study was designed to compare the differential inflammatory and degradative metabolic responses to loading by three tendon types commonly used for autograft ACL reconstruction.

Materials and Methods

With IRB approval (IRB # 2009879) and informed patient consent, portions of 9 QT, 7 PT and 6 HT were recovered at the time of standard of care ACLR surgeries. Tissues were minced and digested in 0.2 mg/ml collagenase solution for two hours and were then cultured in 10% FBS at 5% CO2, 37°C, and 95% humidity. Once confluent, cells were plated in Collagen Type I-coated BioFlex® plates (1 × 105 cells/well) and cultured for 2 days prior to the application of strain. Then, media was changed to supplemented DMEM with 2% FBS for the application of strain. Fibroblasts were subjected to continuous mechanical stimulation (2-s strain and 10-s relaxation at a 0.5 Hz frequency) at three different elongation strains (mechanical stress deprivation-0%, physiologic strain-4%, and supraphysiological strain-10%)9 for 6 days using the Flexcell FX-4000T strain system. Media was tested for inflammatory biomarkers (PGE2, IL-8, Gro-α, and MCP-1) and degradation biomarkers (GAG content, MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2). Significant (p<0.05) difference between graft sources were assessed with Kruskal-Wallis test and post-hoc analysis. Results are reported as median± interquartile range (IQR).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 40 - 40
1 Jul 2014
Ding Y Guan Z Xu J Ma R
Full Access

Summary

Osteoporosis reduces particle-induced osteolysis in rat model.

Introduction

Wear particle induced osteolysis is considered to be a vital factor that reduces the life span of joint prosthesis. Osteoporosis is not rare in patients with indication for arthroplasty. However, the influence of osteoporosis on wear particles induced osteolysis is not clear. This study is aimed to explore on this issue by using animal model.