Ankle lateral ligament complex injury is common. Traditional ‘Brostrum’ repair, performed either open or arthroscopically, still has a protracted post-operative period. The ‘Internal Brace’ provides a scaffold for the ligament repair and acts as a ‘check-rein’ preventing further injury. 16 patients with ankle instability and injury to the Anterior-Talo-Fibular-Ligament (ATFL) confirmed on MRI were identified. All had completed a period of conservative treatment. All had symptoms of pain in the region of the ATFL and described a feeling of instability. Surgery was performed under general anaesthetic and regional popliteal block. Anterior ankle arthroscopy demonstrated a positive ‘drive through’ in all cases. The ATFL was absent and in the majority replaced by incompetent scar. Scar tissue was removed from the anterior aspect of the ankle allowing visualisation of the fibula and lateral talar neck. Using the Internal Brace system (Arthrex), a 3.5mm swivel-lock with fibre-tape was placed into the fibula. With the ankle in plantar flexion, to allow appropriate tensioning, the distal end of the fibre-tape was secured to the talar neck, at a 45 degree angle, with a 4.75mm biotenodesis screw. The patient was placed into a moon-boot for 7–10 days and mobilised fully weight-bearing. Pre-op score, using EDQ-5, MOXFQ, AOFAS and visual analogue scores, with post-op PROMS were performed. All patients reported improvement in their symptoms at 6 week visit. The majority were back to normal activities at 12 weeks. The few that were not, had missed physiotherapy appointments for various reasons. There were no infections and no implant failures. Arthroscopy allows direct visualisation for accurate placement of the Internal Brace. Post-operatively recovery is expedited due to the stability provided by the ‘Brace’, permitting a more aggressive rehabilitation programme. The greatest potential is arguably for the elite athlete, where an accelerated return to full activity has significant occupational implications.
Digital radiographs are routinely used for preoperative planning, both in trauma and elective patients; particularly in preoperative templating for total hip replacement. Traditional wisdom holds that radiographs are oversized, though the degree to which this occurs is unclear. Although digital templating systems offer the use of calibration markers, this option is not always availed. We aimed to ascertain the typical magnification in departmental xrays of the hip, both to determine the typical degree of magnification as well as ascertain its consistency. All patients undergoing dynamic hip screw fixation (DHS) in our unit over the past 12 months were identified. Using the PACS system, subsequent xrays of the patient with the implant in situ were identified; both anteroposterior abdominal and pelvic films were used. The width of a standard DHS screw (12.5 mm) was compared with the width measured on the xrays to determine a magnification factor. 164 patients were identified, of these 39 had undergone DHS fixation with subsequent xrays. 3 films were focused on the abdomen but provided good coverage of the hip also. 2 xrays were excluded – both due to limited quality. The average magnification was 26.4% (range 15.5%–42%). There was limited consistency between images. Radiographs are a core investigation in the assessment of the orthopaedic patient. The advent of picture archiving and communications systems (PACS) has allowed the enterprising surgeon to pre-emptively plan their surgical technique and implant use. However, the utility of non-calibrated images in planning implant size is limited by variation in magnification. Surgeons should be cautious in using such images to guide their implant usage.
Soft tissue balancing is critical to successful knee arthroplasty. Pre-operative planning ensures that the surgeon is prepared for any eventuality. We report a large femoral exostosis resulting in gross instability, requiring revision to a constrained implant. An 81 year old female presented with osteoarthritis of the left knee. Xray showed a medial bony mass. CT noted a large bony exostosis arising from the posteromedial femoral condyle. Review showed the exostosis was not related to the medial collateral ligament (MCL). At surgery, the exostosis was noted to be tenting the MCL – excision resulted in complete flaccidity. A trial of the Biomet AGC prosthesis revealed gross medial instability. The decision was taken to convert to a DePuy Sigma TC3 system. Whilst removing TC3 trial components, a lateral condyle fracture occurred. This was fixed with a 1/3 tubular plate and interfragmentary screw. The TC3 system and an AGC patellar button were found to be congruent. A small lateral release was performed, the deep MCL was replaced with tagging sutures through the MCL and the pes anserinus. At 9 weeks post operatively, the patient was pain free and mobilising independently. The knee was stable, with range of movement from 0 to 110 degrees. To our knowledge, this is the first report of such a complication in the literature. It highlights that despite optimal preoperative planning, the surgeon must be prepared to adapt to the situation at hand. It also highlights the importance of having ‘bail out’ options available on shelf when performing routine surgery.