Human synovium harbours macrophages and T-cells that secrete inflammatory cytokines, stimulating chondrocytes to release proteinases like aggrecanases and matrix metalloproteinases (MMPs) during the development of Osteoarthritis (OA). Inflammation of the synovium is a key feature of OA, linked to several clinical symptoms and the disease progression. As a prelude to testing in an OA mouse model, we have used the tetracycline system (Tet) to modify mouse mesenchymal stem cells (mMSCs) to over-express viral interleukin 10 (vIL10), an anti-inflammatory cytokine, to modulate the osteoarthritic environment and prevent disease development. MSCs isolated from the marrow of C57BL/6J mice expressed CD90.2, SCA-1, CD105, CD140a, and were negative for CD34, CD45 and CD11b by flow cytometry. Adenoviral transduction of MSCs carrying CMVIL10 and TetON as test, and untransduced, AdNull and TetOFF as negative controls was successful and tightly controlled vIL10 production was demonstrated by CMVIL10 and TetON MSCs using a vIL10 ELISA kit. Co-incubation of vIL10MSC CM with lipopolysaccharide activated bone-marrow derived murine macrophages (BMDMs) resulted in reduction of TNF-α, IL-6 levels and elevated production of IL-10 by ELISA and high iNOS release by Griess assay. Co-culture of active macrophages with TetON MSCs, resulted in polarisation of macrophage cell population from M1 to M2 phase, with decrease in pro-inflammatory MHC-II (M1 marker) and increase in regulatory CD206 (M2 marker) expression over time. The PCR profiler array on MSC CM treated BMDMs, also showed changes in gene expression of critical pro-inflammatory cytokines and receptors involved in the TLR4 pathway. The biscistronic TetON transduced MSCs proved to be most immuno-suppressive and therefore feasible as efficient anti-inflammatory therapy that can utilised
Osteoarthritis (OA) is a degenerative disease with a strong inflammatory component. Intra-articular (IA) injections of mesenchymal stem cells (MSCs) modulate local inflammation, although the lack of engraftment suggests that they undergo apoptosis. The aim of this study is to investigate the fate of IA-delivered MSCs in an animal model of OA and to assess the role of apoptosis