Ganz's studies made it possible to address joint deformities on both femoral and acetabular side brought by the Legg-Calvè-Perthes disease (LCPD). Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency along with periacetabular osteotomy (PAO). The purpose of this study is to show the clinical and morphologic outcomes of the technique, and an implemented planning approach. From 2015 to 2023, 13 FHROs were performed on 11 patients for LCPD, in two centers. 11 of 13 hips had an associated PAO. A specific CT and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiographic parameters (sphericity index, extrusion index, integrity of the Shenton's line, LCE angle, Tonnis angle, CCD angle) and clinical parameters (ROM, VAS, Merle d'Aubigné-Postel score, modified-HHS, EQ5D-5L). Early and late complications were reported. The mean follow-up was 40 months. The mean age at surgery was 11,4 years. No major complications were recorded. One patient required a total hip arthroplasty. Femoral Head Sphericity increased from 45% to 70% (p < 0,001); LCE angle from 18° to 42,8° (p < 0,001); extrusion Index from 36,6 to 8 (p < 0,001); Tonnis Angle from 14,4° to 6,2° (p = 0.1); CCD Angle from 131,7 to 136,5° (p < 0,023). The VAS score improved from 3,25 to 0,75,(p = 0.06); Merle d'Aubigné-Postel score from 14.75 to 16 (p = 0,1); Modified-HHS from 65,6 to 89,05 (p = 0,02). The EQ 5D 5L showed significant improvements. ROM increased especially in abduction and extra-rotation. FHRO associated with periacetabular procedures is a safe technique that showed improved functional, clinical and morphologic outcomes in LCPD. The newly introduced simulation and planning algorithm may help to further refine the technique.
There is still little information on the histological characteristics of the acetabular bone tissue after failure of the primary prosthetic component. The purpose of this study is to characterize the viability and quality of the acetabular bone tissue in patients undergoing acetabular revision for aseptic loosening of uncemented components. 19 patients were enrolled: 14 hip revisions and 5 primary total hip arthroplasty. Overall bone quality was significantly worse in the study group due reduced viability, overturn of lamellar structures, reduced amount of intramedullary hematopoietic component in respect to the controls; this could result in poor ability of the host bone to interact with the implanted components.
Tannast has recently shown that safe hip dislocation (SHD) for femoroacetabular impingement treatment does not result in atrophy and degeneration of periarticular hip muscles. In more complex procedures, such as relative neck lengthening for Perthes disease (PD) or modified Dunn procedure for slipped capital epiphysis (SCFE), minimus gluteus femoral insertion is detached to achieve enough mobility of osteotomized trochanter and to fix the latter more distally. Aim of this study was to evaluate MRI appearance of minimus and medius gluteus after relative neck lengthening. Patients treated with SHD and relative neck lengthening eventually associated to epiphyseal realignment for PD or SCFE treatment underwent magnetic resonance imaging (MRI) to study gluteus minimus (MI) and medius (ME) muscles. In the axial T1-weighted sequences, cross sectional area (CSA) and signal intensity were evaluated at acetabular roof level. Statistical comparison was made with the opposite healthy side. Fifteen patients underwent an MRI at an average of 59 months (SD=27.3) after surgery. Average ratio between gluteus minimus CSA (treated/healthy side) was 0.90 (SD=0.2): this reduction in volume was statistically significant (p=0.04) as well as the signal intensity (p=0.04). CSA and signal intensity of gluteus medius did not differ between two sides (respectively p=0.78 and p=0.30). In conclusion, gluteus medius appearance was not influenced by distal fixation of the trochanter. The minimus gluteus was reduced in volume as much as 10% in respect to healty side; increased signal intensity in MRI T1-weighted (fatty infiltration) was found in the minimus gluteus.