Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 63 - 63
1 Jul 2014
Marmotti A Mattia S Peretti G Bonasia D Bruzzone M Dettoni F Rossi R Mazzucchelli L Gioia D Castoldi F
Full Access

Summary Statement

Mesenchymal stem cells from minced umbilical cord fragments may represent a valuable cell population for cartilage and bone tissue engineering

Introduction

A promising approach for cartilage and bone repair is the use of umbilical cord mesenchymal stem cell (UC-MSC)-based tissue engineering. Through a simple and efficient protocol based on mincing the umbilical cord, a consistent number of multipotent UC-MSCs can be obtained. The aim of this in-vitro study is to investigate the pluripotency of UC-MSCs and, in particular, the chondrogenic and osteogenic potential of UC-MSCs grown in tridimensional scaffold, in order to identify a potential clinical relevance for patients who might benefit from MSCs-therapy.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 324 - 324
1 Jul 2014
Marmotti A Mattia S Bonasia DE Bruzzone M Terrando S Tarella C Ponzo E Blonna D Castoldi F Peretti GM Rossi R
Full Access

Summary Statement

Hypoxia enhances chondrocyte phenotype of cells migrating from cartilage fragments, thus supporting the use of chondral fragment as a potential cell source for one-stage cartilage repair

Introduction

Minced cartilage fragments are a viable cell source for one stage cartilage repair, as shown in both in preclinical and clinical studies. However, the joint microenvironment, in which the repair process takes place, is hypoxic and no evidences are present in literature regarding the behaviour of cartilage fragments in a hypoxic environment. Aim of the study is to verify if hypoxia could influence chondrocyte outgrowth from cartilage fragments into a Hyaluronic-Acid/fibrin scaffold and evaluate its effects on migrating chondrocyte behaviour, compared to normoxic condition. This could be significant in the perspective of a wide clinical application of human chondral fragments for single stage repair.