LIMB-Q Kids is a new patient-reported outcome measure (PROM) for children with Lower limb differences (LLDs). The objective is to conduct an international field test study. A mixed method multiphase approach was used to develop LIMB-Q Kids. In phase one, a systematic review was conducted to identify concepts from existing PROMs used in research with children with LLDs. A preliminary conceptual framework derived from the systematic review informed an international qualitative study. The data from qualitative interviews were used to form the LIMB-Q Kids, which was further refined through multiple rounds of cognitive debriefing interviews with children. Input was obtained from parents and healthcare professionals from Australia, Canada, Ethiopia, India, UK, and the USA. LIMB-Q Kids was translated and culturally adapted into multiple languages.Introduction
Materials & Methods
Smartphone-based apps that measure step-count and patient reported outcomes (PROMs) are being increasingly used to quantify recovery in total hip arthroplasty (THA). However, optimum patient-specific activity level before and during THA early-recovery is not well characterised. This study investigated 1) correlations between step-count and PROMs and 2) how patient demographics impact step-count preoperatively and during early postoperative recovery. Smartphone step-count and PROM data from 554 THA patients was retrospectively reviewed. Mean age was 64±10yr, BMI was 29±13kg/m2, 56% were female. Mean daily step count was calculated over three time-windows: 60 days prior to surgery (preop), 5–6 weeks postop (6wk), and 11–12 weeks postop (12wk). Linear correlations between step-count and HOOS12 Function and UCLA activity scores were performed. Patients were separated into three step-count levels: low (<2500steps/day), medium (2500-5500steps/day), and high (>5500steps/day). Age >65years, BMI >30, and sex were used for demographic comparisons. Student's t-tests determined significant differences in mean step-counts between demographic groups and in mean PROMs between step-count groups. UCLA correlated with step-count at all time-windows (p<0.01). HOOS12 Function correlated with step-count preoperatively and at 6wk (p<0.01). High vs low step count individuals had improved UCLA scores preoperatively (∆1.8,p<0.001), at 6wk (∆1.1,p<0.05), and 12wk (∆1.6,p<0.01), and improved HOOS12 Function scores preoperatively (∆8.4,p<0.05) and at 6wk (∆8.8,p<0.001). Younger patients had greater step-count preoperatively (4.1±3.0k vs 3.0±2.5k, p<0.01) and at 12wk (5.1±3.3k vs 3.6±2.9k, p<0.01). Males had greater step-count preoperatively (4.1±3.0k vs. 3.0±2.7k, p<0.001), at 6wk (4.5±3.2k vs 2.6±2.5k, p<0.001), and at 12wk (5.2±3.6k vs. 3.4±2.5k, p<0.001). Low BMI patients had greater step-count at 6wk (4.3±3.3k vs. 2.6±2.7k, p<0.01) and 12wk (5.0±3.6k vs. 3.6±2.6k, p<0.05). Daily step-count is significantly impacted by patient demographics and correlates with PROMs, where patients with high step count exhibit improved PROMs. Generic recovery profiles may therefore not be appropriate for benchmarking across diverse populations.
Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype.
Preoperative ligament laxity can be characterized intraoperatively using digital robotic tensioners. Understanding how preoperative knee joint laxity affects preoperative and early post-operative patient reported outcomes (PROMs) may aid surgeons in tailoring intra-operative balance and laxity to optimize outcomes for specific patients. This study aims to determine if preoperative ligament laxity is associated with PROMs, and if laxity thresholds impact PROMs during early post-operative recovery. 106 patients were retrospectively reviewed. BMI was 31±7kg/m2. Mean age was 67±8 years. 69% were female. Medial and lateral knee joint laxity was measured intraoperatively using a digital robotic ligament tensioning device after a preliminary tibial resection. Linear regressions between laxity and KOOS12-function were performed in extension (10°), midflexion (45°), and flexion (90°) at preoperative, 6-week, and 3-month time points. Patients were separated into two laxity groups: ≥7 mm laxity and <7 mm laxity. Student's Correlations were found between preoperative KOOS12-function and medial laxity in midflexion (p<0.001) and flexion (p<0.01). Patients with <7 mm of medial laxity had greater preoperative KOOS12-function scores compared to patients with ≥7 mm of medial laxity in extension (46.8±18.2 vs. 29.5±15.6, p<0.05), midflexion (48.4±17.8 vs. 32±16.1, p<0.001), and flexion (47.7±18.3 vs. 32.6±14.7, p<0.01). No differences in KOOS12-function scores were observed between medial laxity groups at 6-weeks or 3-months. All knees had <5 mm of medial laxity postoperatively. No correlations were found between lateral laxity and KOOS12-function. Patients with preoperative medial laxity ≥7 mm had lower preoperative PROMs scores compared to patients with <7 mm of medial laxity. No differences in PROMs were observed between laxity groups at 6 weeks or 3 months. Patients with excessive preoperative joint laxity achieve similar PROMs scores to those without excessive laxity after undergoing gap balancing TKA.
Passive smartphone-based apps are becoming more common for measuring patient progress after total knee arthroplasty (TKA). Optimum activity levels during early TKA recovery haven't been well documented. This study investigated correlations between step-count and patient reported outcome measures (PROMs) and how demographics impact step-count preoperatively and during early post-operative recovery. Smartphone capture step-count data from 357 TKA patients was retrospectively reviewed. Mean age was 68±8years. 61% were female. Mean BMI was 31±6kg/m2. Mean daily step count was calculated over three time-windows: 60 days prior to surgery (preop), 5-6 weeks postop (6wk), and 11-12 weeks postop (12wk). Linear correlations between step-count and KOOS12-function and UCLA activity scores were performed. Patients were separated into three step-count levels: low (<1500steps/day), medium (1500-4000steps/day), and high (>4000steps/day). Age >65years, BMI >30kg/m2, and sex were used for demographic comparisons. Student's t-tests determined significant differences in mean step-counts between demographic groups, and in mean PROMs between step-count groups. UCLA correlated with step-count at all time-windows (p<0.01). KOOS12-Function correlated with step-count at 6wk and 12wk (p<0.05). High step-count individuals had improved PROMs compared to low step-count individuals preoperatively (UCLA: ∆1.4 [p<0.001], KOOS12-Function: ∆7.3 [p<0.05]), at 6wk (UCLA: ∆1 [p<0.01], KOOS12-Function: ∆7 [p<0.05]), and at 12wk (UCLA: ∆0.8 [p<0.05], KOOS12-Function: ∆6.5 [p<0.05]). Younger patients had greater step-count preoperatively (3.8±3.0k vs. 2.5±2.3k, p<0.01), at 6wk (3.1±2.9k vs. 2.2±2.3k, p<0.05) and at 12wk (3.9±2.6k vs. 2.8±2.6k, p<0.01). Males had greater step-count preoperatively (3.7±2.6k vs. 2.5±2.6k, p<0.001), at 6wk (3.6±2.6k vs. 1.9±2.4k, p<0.001), and at 12wk (3.9±2.3 vs. 2.8±2.8k, p<0.01). No differences in step-count were observed between low and high BMI patients at any timepoint. High step count led to improved PROMs scores compared to low step-count. Early post-operative step-count was significantly impacted by age and sex. Generic recovery profiles may not be appropriate across a diverse population.
We present the first 12 consecutive patients, undergoing elective paediatric limb reconstruction with an external fixator, for the 12-month period October 2020-October 2021. This is a single surgeon series for a newly appointed Consultant with limited previous experience. Arrangements were made for mentoring by a senior surgeon recently retired from the NHS but still active in private practice. The average age of patients was 10.5years at the time of frame application (5—15 years). Four frames in three patients were for Blount's; two for sequelae of NF1; two for posteromedial tibial bow with shortening, two for fibula hemimelia; one congenital short femur, one for sequelae of neonatal sepsis and one for bone loss following tumour resection.Introduction
Materials and Methods
There is a drive to reduce length of stay in children undergoing limb reconstruction but a reduction in community physiotherapy input and a consequent pressure to ensure children are as independent as possible prior to discharge. This study aims to look at time taken and potential factors effecting the achievement of pre-set mobility goals and length of stay in this population Between June 2018 and November 2021 data was collated for patients who underwent limb reconstruction at Great Ormond Street hospital. 77 patients were reviewed. Data collected included type and location of lengthening device and length of stay. A modified version of the Goal Attainment Score (GAS) was used and included 3 goals which the child needed to achieve within 7 days post-operatively.Introduction
Materials and Methods
Apparently well-orientated total hip replacements (THR) can still fail due to functional component malalignment. Previously defined “safe zones” are not appropriate for all patients as they do not consider an individual's spinopelvic mobility. The Optimized Positioning System, OPSTM (Corin, UK), comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. The aim of this study was to determine the early revision rate from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) for THRs implanted using OPSTM. Between January 4th 2016 and December 20st 2017, a consecutive series of 841 OPSTMcementless total hip replacements were implanted using a Trinity acetabular cup (Corin, UK) with either a TriFit TS stem (98%) or a non-collared MetaFix stem (2%). 502 (59%) procedures were performed through a posterior approach, and 355 (41%) using the direct superior approach. Mean age was 64 (range; 27 to 92) and 51% were female. At a mean follow-up of 15 months (range; 3 to 27), the complete list of 857 patients was sent to the AOANJRR for analysis.Introduction & aims
Method
Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT. Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the bone density at the stem/bone interface using the Hounsfield Units (HU) of each pixel of the CT [Fig. 1]. Blue represents low density bone transitioning through to green and then red (most dense).Introduction
Methods
Appropriate femoral stem anteversion is an important factor in maintaining stability and maximizing the performance of the bearing after total hip replacement (THR). The anteversion of the native femoral neck has been shown to have a significant effect on the final anteversion of the stem, particularly with a uncemented femoral component. The aim of this study was to quantify the variation in native femoral neck anteversion in a population of patients requiring total hip replacement. Pre-operatively, 1215 patients received CT scans as part of their routine planning for THR. Within the 3D planning, each patient's native femoral neck anteversion, measured in relation to the posterior condyles of the knee, was determined. Patients were separated into eight groups based upon gender and age. Males and females were divided by those under 55 years of age, those aged 55 to 64, 65 to 74 and those 75 or older.Introduction
Methods
The pelvis moves in the sagittal plane during functional activity. These movements can have a detrimental effect on functional cup orientation. The authors previously reported that 17% of total hip replacement (THR) patients have excessive pelvic rotation preoperatively. This increased pelvic rotation could be a risk factor for instability and edge-loading in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness affects the number of patients at risk of excessive sagittal pelvic rotation. Pre-operatively, 3428 patients had their pelvic tilt (PT) and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated, as part of routine planning for THR. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender and lumbar flexion. The percentage of patients in each group with excessive pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined.Introduction
Method
The Intellijoint HIP system is a mini-optical navigation system designed to intraoperatively assist with cup orientation, leg length and offset in total hip replacement (THR). As with any imageless navigation system, acquiring the pelvic reference frame intraoperatively requires assumptions. The system does however have the ability to define the native acetabular orientation intra-operatively by registering 3-points along the bony rim. In conjunction with a pre-operative CT scan, the authors hypothesised that this native acetabular plane could be used as an intraoperative reference to achieve a planned patient-specific cup orientation. Thirty-eight THR patients received preoperative OPSTM dynamic planning (Optimized Ortho, Sydney). On the pre-operative 3D model of each patient's acetabulum, a 3-point plane was defined by selecting recognisable features on the bony rim. The difference in inclination and anteversion angles between this native 3-point reference plane and the desired optimal orientation was pre-operatively calculated, and reported to the surgeon as “adjustment angles”. Intraoperatively, the surgeon tried to register the same 3-points on the bony rim. Knowing the intraoperative native acetabular orientation, the surgeon applied the pre-calculated adjustment angles to achieve the planned patient specific cup orientation. All patients received a post-operative CT scan at one-week and the deviation between planned and achieved cup orientation was measured. Additionally, the cup orientation that would have been achieved if the standard Intellijoint pelvic acquisition was performed was retrospectively determined.Introduction
Method
Appropriate prosthetic alignment is an important factor in maintaining stability and maximising the performance of the bearing after total hip replacement (THR). With a cementless component, the anteversion of the native femur has been shown to influence the anteversion of the prosthetic stem. However, the extent to which anteversion of a cementless stem can be adjusted from the native anteversion has seldom been reported. The aim of this study was to investigate the difference between native and stem anteversion with two different cementless stem designs. 116 patients had 3-dimensional templating as part of their routine planning for THR (Optimized Ortho, Sydney). 96 patients from 3 surgeons (AS, JB, SM) received a blade stem (TriFit TS, Corin, UK) through a posterior approach. 18 patients received a fully HA-coated stem (MetaFix, Corin, UK) through a posterior approach by a single surgeon (WB). The anteversion of the native femoral neck was measured from a 3D reconstruction of the proximal femur. All patients received a post-operative CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was then measured. As surgeons had differing philosophies around target stem anteversion, the differences amongst surgeons were also investigated.Introduction
Method
Correct prosthetic alignment is important to the longevity and function of a total hip replacement (THR). With the growth of 3-dimensional imaging for planning and assessment of THR, the importance of restoring, not just leg length and medial offset, but anterior offset has been raised. The change in anterior offset will be influenced by femoral anteversion, but there are also other factors that will affect the overall change after THR. Consequently, the aim of this study was to investigate the relationship between anterior offset and stem anteversion to determine the extent to which changing anteversion influences anterior offset. Sixty patients received a preoperative CT scan as part of their routine planning for THR (Optimized Ortho, Sydney). All patients received a Trinity cementless shell and a cemented TaperFit stem (Corin, UK) by the senior author through an anterolateral approach. Stem anteversion was positioned intraoperatively to align with cup anteversion via a modified Ranawat test. Postoperatively, patients received a CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was measured, along with the 3-dimensional change in head centre from pre-to post-op. Finally, the relationship between change in stem anteversion and change in anterior offset was investigated.Introduction & aims
Method
The posterior condylar axis of the knee is the most common reference for femoral anteversion. However, the posterior condyles, nor the transepicondylar axis, provide a functional description of femoral anteversion, and their appropriateness as the ideal reference has been questioned. In a natural standing positon, the femur can be internally or externally rotated, altering the functional anteversion of the native femoral neck or prosthetic stem. Uemura et al. found that the femur internally rotates by 0.4° as femoral anteversion increases every 1°. The aim of this study was to assess the relationship between femoral anteversion and the axial rotation of the femur before and after total hip replacement (THR). Fifty-nine patients had a pre-operative CT scan as part of their routine planning for THR. The patients were asked to lie in a comfortable position in the CT scanner. The internal/external rotation of the femur, described as the angle between the posterior condyles and the CT coronal plane, was measured. The native femoral neck anteversion, relative to the posterior condyles, was also determined. Identical measurements were performed at one-week post-op using the same CT methodology. The relationship between femoral IR/ER and femoral anteversion was studied pre- and post-op. Additionally, the effect of changing anteversion on the axial rotation of the femur was investigated.Introduction
Method
Restoration of the femoral head centre during THR should theoretically improve muscle function and soft tissue tension. The aim of this study was to assess whether 3D planning and an accurately controlled neck osteotomy could help recreate hip anatomy. 100 consecutive THR patients received OPSTM 3D femoral planning. For each patient a 3D stem+head position was pre-operatively planned which restored the native head height, restored global offset after cup medialisation and reproduced anterior offset, in the superior-inferior, medial-lateral and anterior-posterior directions respectively. The femoral osteotomy was planned preoperatively and controlled intra-operatively with a patient specific guide. All procedures were performed through a posterior approach with a TriFit/Trinity uncemented implant combination. Post-op implant position was determined from CT.Introduction
Methods
Both navigation and instrumented bone referencing use unreliable intraoperative landmark identification or fixed referencing rules which don't reflect patient specific variability. PSI, however, lacks the flexibility to adapt to soft tissue factors not known during preoperative planning, in addition to suffering error from guide fit. A novel method of recreating surgical cut planes that combines preoperative image based identification of landmarks and planning with intraoperative adjustability is under development. This method uses an intraoperative 3D scan of the bone in conjunction with a preoperative CT scan to achieve the desired cuts and so avoids issues of intraoperative identification of landmarks. During TKA surgery, a reference device is placed on the exposed femur. The device is used to position a target block which is pinned to the bone (see Figure 1). The condyles and target block are then scanned, the process taking a second to complete. This 3D scan is filtered to remove extraneous bodies and noise leaving only the bony geometry and target block (see Figure 2). The scan is then reconciled to the known bone geometry taken from preoperative CT scans. A cutting block is then fixed to the target block with a reference array visible to the camera attached. Pre-planned cut planes on a computer model of the bone are compared to the position and configuration of the distal cutting guide. Software guides the surgeon in real-time on the necessary configuration changes required to align the cutting block. The cut is performed on the distal femur, the cutting guide removed from the target-block, and a second scan performed. The software repeats the filtering and alignment processes and provides the surgeon with data on how closely the performed cut matches the alignment planned.Introduction
Method
The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Pre-operatively, 1,517 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (point when patients initiate rising from a seated position). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography.Introduction
Methodology
Appropriate acetabular cup orientation is an important factor in reducing instability and maximising the performance of the bearing after Total Hip Arthroplasty (THA). However, postoperative analyses of two large cohorts in the US have shown that more than half of cups are malorientated. In addition, there is no consensus as to what inclination and anteversion angles should be targeted, with contemporary literature suggesting that the orientation should be customised for each individual patient. The aim of this study was to measure the accuracy of a novel patient specific instrumentation system in a consecutive series of 22 acetabular cups, each with a customised orientation. Twenty-two consecutive total hip replacement patients were sent for Trinity Optimized Positioning System (OPS) acetabular planning (Optimized Ortho, Sydney). The Trinity OPS planning is a preoperative, dynamic analysis of each patient performing a deep flexion and full extension activity. The software calculates the dynamic force at the hip to be replaced and plots the bearing contact patch as it traces across the articulating surface. The software modelled multiple cup orientations and the alignment which best centralised the load was chosen by the surgeon from the preoperative reports. Once the target orientations had been determined, a unique patient specific guide was 3D printed and used intra-operatively with a laser guided system to achieve the planned alignment, Fig 1. All patients received a post-operative CT scan at 3 months and the radiographic cup inclination and anteversion was measured. The study was ethically approved by The Avenue Hospital Human Research Ethics Committee, Trial Number 176.Introduction
Methodology
There is increasing interest in the functional positions the pelvis assumes with activities of daily living and its effect on acetabular cup orientation. A number of systems are commercially available to assess these movements, and attempt to position the acetabular component of a total hip replacement in a patient specific safe zone. However, these functional positions are assessed pre operatively when the patient still has the arthritis which may affect the range of movement of the hips, and thus affect the functional position of the pelvis. Obviously the planned acetabular position must take into account any changes in the functional movement of the pelvis as a result of the surgery. Ishida et al showed that a pelvis with more than a 10° anterior tilt when standing can be expected to correct towards neutral by 12 months post-surgery. However many of Ishida's cases were dysplastic. Hip arthritis in the Caucasian population is far less likely due to dysplasia and this may affect these pelvic tilt changes post-operatively. 120 patients who underwent total hip replacement by two surgeons through a posterior approach had had their acetabular planning based on functional imaging according to the Optimized Ortho Protocol (Optimized Ortho, Sydney Australia). They were re-assessed at 12 months post-surgery to determine the changes in their functional pelvic tilts. The Optimized Ortho protocol includes lateral radiographs with the patient standing, sitting forward about to lift off a seat, stepping up with the contralateral leg and a limited supine CT. The functional views are designed to display common functional activities.Introduction
Methods