Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 110 - 110
2 Jan 2024
Barbosa F Silva J Garrudo F Cabral J Morgado J Ferreira F
Full Access

Bone defects can result from different incidents such as acute trauma, infection or tumor resection. While in most instances bone healing can be achieved given the tissue's innate ability of self-repair, for critical-sized defects spontaneous regeneration is less likely to occur, therefore requiring surgical intervention. Current clinical procedures have failed to adequately address this issue. For this reason, bone tissue engineering (BTE) strategies involving the use of synthetic grafts for replacing damaged bone and promoting the tissue's regeneration are being investigated. The electrical stimulation (ES) of bone defects using direct current has yielded very promising results, with neo tissue formation being achieved in the target sites in vivo. Electroactive implantable scaffolds comprised by conductive biomaterials could be used to assist this kind of therapy by either directing the ES specifically to the damaged site or promoting the integration of electrodes within the bone tissue as a coating. In this study, we developed novel conductive heat-treated polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning capable of mimicking key native features of the bone tissue's extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The developed scaffolds were doped with sulfuric acid and mineralized in Simulated Body Fluid to mimic the inorganic phase of bone ECM. As expected, the doped PAN/PEDOT:PSS nanofibers exhibited electroconductive properties and were able to preserve their fibrous structure. The addition of PEDOT:PSS was found to improve the bioactivity of the scaffolds, with a more significant in vitro mineralization being obtained. By seeding the scaffolds with MG-63 osteoblasts and human mesenchymal stem/stromal cells, an increased cell proliferation was observed for the mineralized PAN/PEDOT:PSS nanofibers, which also registered an increased expression of key osteogenic markers (e.g Osteopontin). Our findings appear to corroborate the promising potential of the generated nanofibers for future ES-based BTE applications.

Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), BioMaterARISES (EXPL/CTM-CTM/0995/2021) and OptiBioScaffold (PTDC/EME-SIS/32554/2017, POCI-01- 0145-FEDER- 32554), the PhD scholarship (2022.10572.BD) and through institutional funding to iBB (UIDB/04565/2020 and UIDP/04565/2020), Associate Laboratory i4HB (LA/P/0140/2020) and IT (UIDB/50008/2020).