Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri anesthetic hypothermia in rodents on outcomes in preclinical orthopedic device-related infection studies. A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance was used to determine the fixed effect of peri anesthetic hypothermia (hypothermic defined as rectal temperature <35°C) on the combined harvested tissue and implant colonies forming unit counts, and having controlled for the study groups including treatments received duration of surgery and anesthesia and study period. All animal experiments were approved by relevant ethical committee. A total of 127 rodents (102 rats and 25 mice) were enrolled in an ODRI and met the inclusion criteria. The mean lowest peri-anesthetic temperature was 35.3 ± 1.5 °C. The overall incidence of peri-anesthetic hypothermia was 41% and was less frequently reported in rats (34% in rats versus 68% in mice). Statistical analysis showed a significant effect of peri anesthetic hypothermia on the post-mortem combined colonies forming unit counts from the harvested tissue and implant(s) (p=0.01) when comparing normo- versus hypothermic rodents. Using Wilks’ Λ as a criterion to determine the contribution of independent variables to the model, peri-anesthetic hypothermia was the most significant, though still a weak predictor, of increased harvested colonies forming unit counts. Altogether, the data corroborate the concept that bacterial colonization is affected by abnormal body temperature during general anesthesia at the time of bacterial inoculation in rodents, which needs to be taken into consideration to decrease infection data variability and improve experimental reproducibility.
Treatment of bone infection often includes a burdensome two-stage revision. After debridement, contaminated implants are removed and replaced with a non-absorbable cement spacer loaded with antibiotics. Weeks later, the spacer is exchanged with a bone graft aiding bone healing. However, even with this two-stage approach infection persists. In this study, we investigated whether a novel 3D-printed, antibiotic-loaded, osteoinductive calcium phosphate scaffold (CPS) is effective in single-stage revision of an infected non-union with segmental bone loss in rabbits. A 5 mm defect was created in the radius of female New Zealand White rabbits. The bone fragment was replaced, stabilized with cerclage wire and inoculated with Staphylococcus aureus (MSSA). After 4 weeks, the infected bone fragment was removed, the site debrided and a spacer implanted. Depending on group allocation, rabbits received: 1) PMMA spacer with gentamycin; 2) CPS loaded with rifampin and vancomycin and 3) Non-loaded CPS. These groups received systemic cefazolin for 4 weeks after revision. Group 4 received a loaded CPS without any adjunctive systemic therapy (n=12 group1-3, n=11 group 4). All animals were euthanized 8 weeks after revision and assessed by quantitative bacteriology or histology. Covariance analysis (ANCOVA) and multiple regression were performed. All animals were culture positive at revision surgery. Half of the animals in all groups had eliminated the infection by end of study. In a historical control group with empty defect and no systemic antibiotic treatment, all animals were infected at euthanasia. There was no significant difference in CFU counts between groups at euthanasia. Our results show that treating an osteomyelitis with segmental bone loss either with CPS or PMMA has a similar cure rate of infection. However, by not requiring a second surgery, the use of CPS may offer advantages over non-resorbable equivalents such as PMMA.
The two-step labeling protocol using Lysostaphin and bio-orthogonal click chemistry for staining bacteria is described. The click protocol is efficient in labeling staphylococci and is non-toxic. This protocol promises the efficient of infections that are difficult to assess by conventional imaging. Infection diagnostics in clinics is time consuming, invasive and relays on microbiological cultures. New probes and labeling protocols enabling rapid and specific detection of infection Summary
Introduction