The aim of this study was to report the outcomes of a series of patients with clavicle fracture non-union who had undergone open reduction and internal fixation using a contoured locking plate without the use of distant bone graft. Patients were identified using the hospital database. Records were reviewed to determine basic demographics, operative findings, and radiological outcome. Patients were contacted and details about initial injury and treatment, and return to work and sport were recorded. Disabilities of Arm, Shoulder and Hand (DASH) for both operated and non-operated shoulders were completed.Purpose
Methods
Sling immobilization of the upper limb may affect balance. Computerized dynamic posturography (CDP) provides a validated, objective assessment of balance control and postural stability under dynamic test conditions. We tested the balance of individuals with a shoulder stabilization sling (SSS) using an Equitest Machine to objectively assess imbalance wearing a sling. 42 right hand dominant (RHD) adults (16 females, 26 males; average age 22; range 20–35 years) were included in the study. 6 controls and two SSS groups with 18 Dominant Hand (DH) and 18 Non Dominant Hand (NDH). CDP assessed balance by Sensory Organization Test (SOT), Motor Control Test (MCT) and Adaptation Test (ADT).Introduction
Methods
The majority of radial head fractures may be treated successfully by conservative means and they are often considered a benign injury. However, approximately 25% of Mason type II fractures will not have a good long term result. Pain and stiffness can be a problem and this may be a significant complaint in young active patients with pain at end range of motion. A retrospective review of a single surgeon series of 62 consecutive elbow arthroscopic arthrolyses performed in 62 patients between June 2006 and Sept 2009 was performed. Pre- and post-operative ranges of motion (ROM) were assessed and recorded along with the patient's DASH score. Patients were kept in overnight and splinted in extension. Splints were removed the following day and AROM exercises were commenced with the physiotherapist. Patients were reviewed and assessed at follow up.Introduction
Methods
Reverse Geometry shoulder replacement requires fixation of a base plate (called a metaglene) to the glenoid to which a convex glenosphere is attached. Most systems use screws to achieve this fixation. The suprascapular nerve passes close to the glenoid and is known to be at risk of injury when devices and sutures are inserted into the glenoid. We investigate the risk posed to the suprascapular nerve by placement of metaglene fixation screws. Ten cadaveric shoulder specimens were used. A metaglene was inserted and fixed using 4 screws. The suprascapular nerve was dissected and its branches identified. The screw tips and their proximity to the nerve and branches were identified and recorded.Background
Materials and Methods
Locking plates are widely used in clinical practice for the surgical treatment of complex proximal humerus fractures, especially in osteoporotic bone. The aim of this study is to assess the biomechanical influence of the infero-medial locking screws on maintaining reduction of the fragments in a proximal humerus fracture. A standard 3-part proximal humerus fracture was created in fourth generation humerus saw bones. Each specimen was anatomically reduced and secured with a PHILOS locking plate. Eleven of the specimens had infero-medial locking screws inserted, and 11 specimens did not. Each humerus sawbone underwent cyclical loading at 532N, as previous studies showed this was the maximum force at the glenohumeral joint. The absolute inter-fragmentary motion was recorded using an infra-red motion analysis device. Each specimen was then loaded to failure.Purpose
Materials & Methods
Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval we used ten fresh frozen human proximal humeri. These were stripped of all soft tissue and high resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds.Introduction
Methods