Trauma and orthopaedics is the largest of the
surgical specialties and yet attracts a disproportionately small
fraction of available national and international funding for health
research. With the burden of musculoskeletal disease increasing,
high-quality research is required to improve the evidence base for
orthopaedic practice. Using the current research landscape in the
United Kingdom as an example, but also addressing the international
perspective, we highlight the issues surrounding poor levels of
research funding in trauma and orthopaedics and indicate avenues
for improving the impact and success of surgical musculoskeletal
research. Cite this article:
The optimal management of the tibial slope in
achieving a high flexion angle in posterior-stabilised (PS) total
knee replacement (TKR) is not well understood, and most studies
evaluating the posterior tibial slope have been conducted on cruciate-retaining
TKRs. We analysed pre- and post-operative tibial slope differences,
pre- and post-operative coronal knee alignment and post-operative
maximum flexion angle in 167 patients undergoing 209 TKRs. The mean
pre-operative posterior tibial slope was 8.6° (1.3° to 17°) and
post-operatively it was 8.0° (0.1° to 16.7°). Multiple linear regression
analysis showed that the absolute difference between pre- and post-operative
tibial slope (p <
0.001), post-operative coronal alignment (p
= 0.02) and pre-operative range of movement (p <
0.001) predicted post-operative
flexion. The variance of change in tibial slope became larger as
the post-operative maximum flexion angle decreased. The odds ratio
of having a post-operative flexion angle <
100° was 17.6 if the
slope change was >
2°. Our data suggest that recreation of the anatomical
tibial slope appears to improve maximum flexion after posterior-stabilised
TKR, provided coronal alignment has been restored. Cite this article:
The stemmed tibial implant has enabled the salvage of challenging situations of bone loss in primary knee arthroplasty. This ease of use has unfortunately led to the adoption of stemmed implants in situations where this may not be warranted. In general uncontained defects of less than 5 mm may be dealt with using cement fill techniques. Defect of less than 10mm require bone grafting techniques and those above 10 mm require stems and wedges. In the third category however long term results suggest that good results are only attainable in 65% of cases whether grafts or wedges are used. The use of intramedullary guides in this setting is re-addressed to allow the accurate placement of cuts enabling the use of pegged (or non-stemmed) implants. In addition with the advent of navigation this may be a special situation where non-stemmed implants may be selected over stemmed implants.