Several studies have reported elevated blood cobalt (Co) and chromium (Cr) concentrations in patients with total knee replacements (TKRs). Up to 44% of tissue samples taken from patients with failed TKRs exhibit histological evidence of metal sensitivity/ALVAL. In simulated conditions, metal particles contribute approximately 12% of total wear debris in TKR. We carried out this investigation to determine the source and quantity of metal release in TKRs. We analysed 225 explanted fixed-bearing TKRs (Attune, Genesis II, NexGen, PFC, and Vanguard) revised for any indication. These were analysed using peer-reviewed [coordinate measuring machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D profilometry (surface roughness-Ra) and light microscopy. Histological and blood metal ion concentration analyses were performed in a sub-sample of patients.Objectives
Design and Methods
We identified an unusual pattern of backside deformation on polyethylene (PE) inserts of contemporary total knee replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with NexGen central-locking trays. This backside deformation was significantly associated with tray debonding. Furthermore, recent studies have shown high rate of tray debonding in PS NexGen TKRs. Subsequently, a field safety notice was issued regarding the performance of this particular device combination and the Option tray has been withdrawn from use. Therefore, we hypothesised that the backside deformation of PS inserts may be greater than that of CR inserts. At our national implant retrieval centre, we used peer-reviewed techniques to analyse changes in the bearing wear rate and backside surface deformation of NexGen PE inserts using coordinate measuring machines [N=84 (CR-43 and PS-41) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software.Objectives
Design and Methods
Several studies have reported significant cobalt(Co) and chromium(Cr) elevations in the blood of patients with total-knee-replacements (TKRs), and histological signs of metal sensitivity have been reported in up to 44% of patients undergoing revision of their TKRs. We carried out this investigation to determine the source and quantity of metal release in TKRs. We identified all TKRs with polished CoCr trays (N=59) [Vanguard=29, Attune=4 and PFC=26]. These were analysed using peer-reviewed [coordinate-measuring-machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D-profilometry (surface roughness-Ra) and 4D-microscopy. Histological and blood metal ion concentration analyses were performed.Abstract
Introduction
Methodology
We aimed to identify genes associated with the development of ALVAL at relatively low levels of wear. At our unit all patients undergoing revision of a MoM hip prosthesis have periprosthetic tissue samples graded for ALVAL. Explants undergo volumetric wear testing of the bearing and taper surfaces. We identified patients with moderate/severe ALVAL who had been exposed to lower than the median wear rate of all recorded patients who had developed ALVAL (<3mm3/year). This was termed the “ALVAL” group. We then identified all patients whose tissues had shown no signs of ALVAL. The patients in the two groups were sent buccal DNA collection kits. DNA was examined using next generation sequencing. Alleleic frequencies in the two groups were compared using Fisher's test and compared to a background UK population group (n=8514). We then conducted binary logistic regression with patient age, sex, primary source of debris (taper/bearing) and HLA genotype as the predictors. With the hypothesis that a cobalt/albumin metalloprotein acts as the epitope, we used validated binding prediction software to determine the relative affinities of the binding grooves created by different DQA1/DQB1 genetic combinations for albumin derived peptides. Given the protection that male sex and younger age appears to confer against ALVAL, we hypothesized that testosterone peptides may compete for these binding sites.Introduction
Methods
We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr. For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric wear analysis, joint fluid (JF) Co and Cr concentrations, and ALVAL grade (n = 315). Receiver operating characteristic curves were constructed to assess the reliability of the CoCr JFR in identifying severe ALVAL and/or SOTP. For part B, we included only patients with unilateral prostheses who had given matched serum and whole blood samples for Co and Cr analysis (n = 155). Multiple regression was used to examine the influence of JF concentrations on the serum partitioning of Co and Cr in the blood.Objectives
Methods
We have encountered patients who developed large joint fluid collections with massive elevations in chromium (Cr) and cobalt (Co) concentrations following metal-on-metal (MoM) hip arthroplasties. In some cases, retrieval analysis determined that these ion concentrations could not be explained simply by the wear rates of the components. We hypothesized that these effects may be associated with aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL). We examined the influence of the ALVAL grade on synovial fluid Co and Cr concentrations following adjustment for patient and device variables, including volumetric wear rates. Initially restricting the analysis to include only patients with one MoM hip resurfacing device, we performed multiple regression analyses of prospectively collected data. We then repeated the same statistical approach using results from a larger cohort with different MoM designs, including total hip arthroplasties.Objectives
Patients and Methods
We wished to investigate the influence of metal debris exposure
on the subsequent immune response and resulting soft-tissue injury
following metal-on-metal (MoM) hip arthroplasty. Some reports have
suggested that debris generated from the head-neck taper junction
is more destructive than equivalent doses from metal bearing surfaces. We investigated the influence of the source and volume of metal
debris on chromium (Cr) and cobalt (Co) concentrations in corresponding
blood and hip synovial fluid samples and the observed agglomerated
particle sizes in excised tissues using multiple regression analysis
of prospectively collected data. A total of 199 explanted MoM hips
(177 patients; 132 hips female) were analysed to determine rates
of volumetric wear at the bearing surfaces and taper junctions. Aims
Patients and Methods
Some reports have suggested that debris generated from the head neck taper junction is more destructive than equivalent doses from metal bearing surfaces. Part 1. We examined the relationship between the source (taper/bearing) and volume of metal debris on Cr and Co concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using regression analysis of prospectively collected data at a single revision unit. Part 2. We investigated variables most strongly associated with macroscopic soft tissue injury as documented at revision surgery using ordinal logistic regression. Independent variables included source and volume of CoCr exposure, Cr and Co joint fluid concentrations, joint fluid grade, ALVAL (Aseptic Lymphocytic Vasculitis Associated Lesion) grade, presence of vascular hyalinisation, agglomerated particle size, implant type, patient sex and age.Background
Methods
Previous studies have suggested that the modular junction of metal on metal (MoM) total hip replacements (THR) is an important source of metallic debris. We carried out a prospective study using custom techniques to analyse one of the largest collections of failed contemporary MoM devices in the world. All explants from patients who had suffered adverse reactions to metal debris (ARMD) were included in this study. These explants included: 82 36mm THRs, and 147 resurfacing head THRs and 140 resurfacing arthroplasties from several manufactures. Volumetric wear analysis of the bearing surfaces and taper junctions was carried out using a coordinate measuring machine. The relationships between total metallic loss and metal ion concentrations and the macroscopic and histological tissue appearance of THR patients were compared to those in resurfacing patients. Mann Whitney test for non-parametric data was used to assess significant differences between groups.Background
Methods
The failure and subsequent withdrawal of the ASR device in both its resurfacing and THR form has been well documented. The National Joint Registry report of 2010 quoted figures of 12–13% failure at five years. Adverse reaction to metal debris (ARMD) is a poorly understood condition and patients developing severe metal reactions may go unrecognised for sometime. In 2004 a single surgeons prospective study of the ASR bearing surface was undertaken. We present the ARMD failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Mean follow up was 52 months (24–81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated “failure” if the patient had undergone revision surgery or if the patient had been listed. A second survival analysis was carried out with a failure defined as a serum cobalt > 7µg/L. Full explant analysis was carried out for retrieved prostheses.Background
Patients and Methods
We conducted independent wear analysis of retrieved metal on metal (MoM) hip components from around the world. All patients with resurfaced hips who developed adverse reactions to metal debris (ARMD) were found to have increased wear of the bearing surfaces. This was untrue in patients with large diameter (?36mm) MoM total hip replacements. This led us to search for other factors leading to ARMD. MoM THR explants retrieved from 78 patients suffering ARMD underwent full volumetric wear analysis of bearing surface and taper-junctions using coordinate measuring machine. Scanning electron microscopy (SEM) used to characterise material composition of specific areas.Introduction
Methods
In our independent centre, from 2002 to 2009, 155 BHRs (mean F/U 60 months) have been implanted as well as 420 ASR resurfacings and 75 THRs using ASR XL heads on SROM stems (mean F/U 35) During this period we have experienced a number of failures with patients complaining of worsening groin pain at varying lengths of time post operatively. Aspiration of the hip joints yielded a large sterile effusion on each occasion. At revision, there were copious amounts of green grey fluid with varying degrees of necrosis. There were 17 failures of this nature in patients with ASR implants (12 females) and 0 in the BHR group. This amounts to a failure of 3.5% in the ASR group. Tissue specimens from revision surgery showed varying degrees of “ALVAL” as well as consistently high numbers of histiocytes. Particulate metal debris was also a common finding. The mean femoral size and acetabular anteversion and inclination angles of the ARMeD group/all asymptomatic patients was 45/49mm (p<
0.001), 27/20°(p<
0.001) and 53/48°(p<
0.08). Median blood chromium(Cr) and cobalt(Co) was 29 and 69 μg/L respectively in the ARMeD group versus 3.9 and 2.7 μg/L in the asymptomatic patients (n=160 with ion levels). Explant analysis confirmed greater rates of wear than expected. Lymphocyte proliferation studies involving ARMeD patients showed no hyper reactivity to Cr and Co in vitro implying that these adverse clinical developments are mediated by a toxic reaction or a localised immune response. Our overall results suggest that the reduced arc of cover of the fourth generation ASR cup has led to an increased failure rate secondary to the increased generation of metal debris. This failure rate is 7% in ASR devices with femoral components _47mm.
In our independent centre, in the period from January 2003 to august 2008, over 1100 36mm MoM THRs have been implanted as well as 155 Birmingham Hip Resurfacing procedures, 402 ASR resurfacings and 75 THRs using ASR XL heads on SROM stems. During this period we have experienced a number of failures with patients complaining of worsening groin pain at varying lengths of time post operatively. Aspiration of the hip joints yielded a large sterile effusion on each occasion. At revision, there were copious amounts of green grey fluid with varying degrees of necrosis. There were 11 failures of this nature in patients with ASR implants (10 females) and 2 in the 36 MoM THR group (one male one female). Tissue specimens from revision surgery showed varying degrees of ‘ALVAL’ as well as consistently high numbers of histiocytes. Metal debris was also a common finding. A fuller examination of our ASR cohort as a whole has shown that smaller components placed with inclinations >
45° and anteversions <
10 or >
20° are associated with increased metal ion levels. The 11 ASR failed joints were all sub optimally positioned (by the above definition), small components. Explant analysis using a coordinate measuring machine and out of roundness device confirmed greater than expected wear of each component. The lower number of failures in the 36mm MoM group, as well as the equal sex incidence, suggests that the majority of these failures are due to the instigation of an immune reaction by large amounts of wear debris rather than adverse reactions to well functioning joints. It is likely that small malpositioned ASRs function in mixed to boundary lubrication, and this, combined with the larger radius of these joints compared to the 36mm MoM joints, results in more rapid wear.
Early failure associated with adverse reactions to metal debris is an emerging problem after hip resurfacing but the exact mechanism is unclear. We analysed our entire series of 660 metal-on-metal resurfacings (Articular Surface Replacement (ASR) and Birmingham Hip Resurfacing (BHR)) and large-bearing ASR total hip replacements, to establish associations with metal debris-related failures. Clinical and radiological outcomes, metal ion levels, explant studies and lymphocyte transformation tests were performed. A total of 17 patients (3.4%) were identified (all ASR bearings) with adverse reactions to metal debris, for which revision was required. This group had significantly smaller components, significantly higher acetabular component anteversion, and significantly higher whole concentrations of blood and joint chromium and cobalt ions than asymptomatic patients did (all p <
0.001). Post-revision lymphocyte transformation tests on this group showed no reactivity to chromium or cobalt ions. Explants from these revisions had greater surface wear than retrievals for uncomplicated fractures. The absence of adverse reactions to metal debris in patients with well-positioned implants usually implies high component wear. Surgeons must consider implant design, expected component size and acetabular component positioning in order to reduce early failures when performing large-bearing metal-on-metal hip resurfacing and replacement.