Several studies have reported elevated blood cobalt (Co) and chromium (Cr) concentrations in patients with total knee replacements (TKRs). Up to 44% of tissue samples taken from patients with failed TKRs exhibit histological evidence of metal sensitivity/ALVAL. In simulated conditions, metal particles contribute approximately 12% of total wear debris in TKR. We carried out this investigation to determine the source and quantity of metal release in TKRs. We analysed 225 explanted fixed-bearing TKRs (Attune, Genesis II, NexGen, PFC, and Vanguard) revised for any indication. These were analysed using peer-reviewed [coordinate measuring machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D profilometry (surface roughness-Ra) and light microscopy. Histological and blood metal ion concentration analyses were performed in a sub-sample of patients.Objectives
Design and Methods
We identified an unusual pattern of backside deformation on polyethylene (PE) inserts of contemporary total knee replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with NexGen central-locking trays. This backside deformation was significantly associated with tray debonding. Furthermore, recent studies have shown high rate of tray debonding in PS NexGen TKRs. Subsequently, a field safety notice was issued regarding the performance of this particular device combination and the Option tray has been withdrawn from use. Therefore, we hypothesised that the backside deformation of PS inserts may be greater than that of CR inserts. At our national implant retrieval centre, we used peer-reviewed techniques to analyse changes in the bearing wear rate and backside surface deformation of NexGen PE inserts using coordinate measuring machines [N=84 (CR-43 and PS-41) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software.Objectives
Design and Methods
Previous studies have suggested that the modular junction of metal on metal (MoM) total hip replacements (THR) is an important source of metallic debris. We carried out a prospective study using custom techniques to analyse one of the largest collections of failed contemporary MoM devices in the world. All explants from patients who had suffered adverse reactions to metal debris (ARMD) were included in this study. These explants included: 82 36mm THRs, and 147 resurfacing head THRs and 140 resurfacing arthroplasties from several manufactures. Volumetric wear analysis of the bearing surfaces and taper junctions was carried out using a coordinate measuring machine. The relationships between total metallic loss and metal ion concentrations and the macroscopic and histological tissue appearance of THR patients were compared to those in resurfacing patients. Mann Whitney test for non-parametric data was used to assess significant differences between groups.Background
Methods
The failure and subsequent withdrawal of the ASR device in both its resurfacing and THR form has been well documented. The National Joint Registry report of 2010 quoted figures of 12–13% failure at five years. Adverse reaction to metal debris (ARMD) is a poorly understood condition and patients developing severe metal reactions may go unrecognised for sometime. In 2004 a single surgeons prospective study of the ASR bearing surface was undertaken. We present the ARMD failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Mean follow up was 52 months (24–81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated “failure” if the patient had undergone revision surgery or if the patient had been listed. A second survival analysis was carried out with a failure defined as a serum cobalt > 7µg/L. Full explant analysis was carried out for retrieved prostheses.Background
Patients and Methods
We conducted independent wear analysis of retrieved metal on metal (MoM) hip components from around the world. All patients with resurfaced hips who developed adverse reactions to metal debris (ARMD) were found to have increased wear of the bearing surfaces. This was untrue in patients with large diameter (?36mm) MoM total hip replacements. This led us to search for other factors leading to ARMD. MoM THR explants retrieved from 78 patients suffering ARMD underwent full volumetric wear analysis of bearing surface and taper-junctions using coordinate measuring machine. Scanning electron microscopy (SEM) used to characterise material composition of specific areas.Introduction
Methods