Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 2 - 2
1 Sep 2012
Wuestemann T Bastian A Parvizi J Nessler J Kolisek F Nevelos J
Full Access

Introduction

The origins of the uncemented tapered wedge hip stem design currently offered by several orthopaedic device companies can be linked back to the cemented Straight Mueller type stem design first used in 1977. The design, a wedge shape with a taper angle of 6 degrees, maintains a single medial curvature for all sizes and increases laterally in the width to accommodate different size femurs. Although evolutionary improvements have been made over the years the basic body geometry of the stem has stayed mainly unchanged with excellent clinical survivorship. Over the past decade, the demographics of hip replacement have changed, with a large increase in younger male patients in the age range of 40 to 60 years. In this study the femoral fit of a novel tapered stem, designed to fit a wide array of patient types, is compared to a standard predicate tapered stem design.

Methods

A bone morphology study was performed on a patient population of 556 patients using three dimensional digital data from CT-scans. To characterize the fit of the stem designs we analyzed the ratio of a distal (60mm below lesser trochanter) and a proximal (10mm above lesser trochanter) cross section. The same measurements were taken with the standard tapered stem design and the novel tapered stem design, with a given constant implantation height of 20mm above the lesser trochanter. The fit of the stems was classified as Type 1, where there was both proximal and distal engagement, Type 2, proximal engagement only, Type 3, distal engagement only. The distal and proximal engagement, Type 1, was specified with a maximum engagement difference of 2mm proximal to distal.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 545 - 551
1 Apr 2009
Schnurr C Nessler J Meyer C Schild HH Koebke J König DP

The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck.

We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads.

In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens.

When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.