To find out the usefulness of knee arthroscopy with debridement in patients of 60 years or more. We retrospectively looked at the patients of 60 years or more age who under went knee arthroscopy between Jan 2012 and Dec 2012 and collected demographic data, indications for arthroscopy, grading of preoperative knee x-rays (Kellgren-Lawrence), intra-operative findings, post operative relief of symptoms and any further surgeries till the time of study.Aim
Materials and Methods
The wear particles released from the polyethylene (PE) tibial insert of modular total knee replacements (TKRs) have been shown to cause wear particle induced osteolysis, which may necessitate revision surgery [1]. Wear occurs at the backside surface of the PE insert of modular TKRs, resulting from the relative movement between the PE insert and the tibial tray [2]. Wear particles generated from the backside surface of the PE insert have been shown to be smaller in size than those originating from the articular surface [1], and may therefore have increased biological activity and osteolytic potential [3-4]. The ability to predict backside micromotion and contact pressure by finite element simulation has previously been demonstrated by O'Brien et al. [6-7]. Although the effect of insert thickness on articular surface contact pressure has been investigated [5], the effects of insert thickness on backside contact pressures, backside micromotion, and wear has not received adequate attention. Brandt et al. [2] has suggested that increased insert thickness was associated with increased backside damage (Fig. 1). In the present study, finite element simulations were conducted using the Sigma - Press Fit Condylar TKR (Sigma-PFC®, DePuy Orthopedics Inc., Warsaw, IN) with inserts of different insert thickness ranging between 5, 10, 15, 20 and 25 mm. The TKRs were simulated under ISO 14343-2 [8]. A non-linear PE material model was implemented by means of the J2-plasticity theory [6] and the effects of insert thickness on backside micromotion and contact pressure were analyzed. At the peak loading of the simulated gait cycle (time=13%), the 5 mm thick PE insert showed a greater backside peak contact pressure than the 25 mm thickness PE insert. Increasing insert thickness from 5 mm to 25 mm lead to approximately 15% greater peak micromotion at the modular interface (Fig. 2). This effect may be attributed to the ability of the PE material to distribute the load more evenly through deformation at the modular interface and reduce micromotion for thinner inserts. It is suggested that increased insert thickness results in increased moments at the modular interface that could lead to increased backside wear in silico. Although an increase in PE insert thickness was only associated with a moderate increase in backside micromotion in the present study, it was deemed likely that backside micromotion could be accelerated for thicker inserts in vivo as the PE locking mechanism has been shown to degrade after extended implantation periods.
Femoral components with an oxidized zirconium-niobium (OxZr) gradient ceramic surface (Oxinium, Smith & Nephew, Memphis, TN) were introduced as an alternative to cobalt-chromium (CoCr) alloy femoral components for the purpose of PE wear reduction in total knee replacements [1]. In the present study, the surface damage and clinical performance of both CoCr alloy and OxZr femoral components were investigated. By matching CoCr alloy and OxZr femoral components for clinical factors, as done by Heyse et al. [2], the surface damage on retrieved CoCr alloy and OxZr femoral component was assessed. Twenty-six retrieved cobalt-chromium (CoCr) alloy femoral components were matched with twenty-six retrieved oxidized zirconium (OxZr) femoral components for implantation period, body-mass index, patient gender, implant type (cruciate ligament retaining/substituting), and polyethylene insert thickness. Detailed surface profilometry was performed on retrieved femoral condyles in areas that had not been damaged by gouging [3] with the specific purpose of investigating the in vivo wear behaviour of undamaged OxZr surface. In addition, the cumulative survivorships were calculated for patients who had received CoCr alloy or OxZr femoral components from our orthopaedic database. In order to identify factors that affect the clinical performance of CoCr alloy and OxZr femoral components, the findings from the retrieval analysis and the survivorship analysis were combined. The Rp, Rpm, and Rpk-values for the retrieved CoCr alloy femoral components were found significantly higher than the Rp, Rpm, and Rpk-values for the retrieved OxZr femoral components (p ≤ 0.031). The roughness parameters values (Ra, Rq, Rz, Rp, Rpm, Rpk, Rv, and Rsk) for the retrieved CoCr alloy femoral components were found significantly higher than the values of the new, never implanted CoCr alloy femoral components (p ≥ 0.001). The surface roughness was higher on the medial condyles than the lateral condyles of the retrieved CoCr alloy femoral components; such a difference was not observed on the retrieved OxZr femoral components. The OxZr bearing surface appeared to protect the femoral components from abrasive wear in vivo. At 8.5-years follow up, the cumulative survivorship for the CoCr alloy femoral components (98%) was not found to be statistically significantly different (p = 0.343, Breslow test) from the OxZr femoral components (97.5%). Therefore, OxZr femoral components appeared to possess low wear characteristics and could be particularly suitable for younger, heavier patients to ensure long-term durability.